Estimating the impact of changing fertilizer application rate, land use, and climate on nitrous oxide emissions in Irish grasslands

2013 ◽  
Vol 374 (1-2) ◽  
pp. 55-71 ◽  
Author(s):  
Dong-Gill Kim ◽  
Rashad Rafique ◽  
Paul Leahy ◽  
Mark Cochrane ◽  
Gerard Kiely
2016 ◽  
Vol 154 (5) ◽  
pp. 812-827 ◽  
Author(s):  
M. J. BELL ◽  
J. M. CLOY ◽  
C. F. E. TOPP ◽  
B. C. BALL ◽  
A. BAGNALL ◽  
...  

SUMMARYIncreasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.


2006 ◽  
Vol 70 (1) ◽  
pp. 235-248 ◽  
Author(s):  
R. F. Grant ◽  
E. Pattey ◽  
T. W. Goddard ◽  
L. M. Kryzanowski ◽  
H. Puurveen

2015 ◽  
Vol 44 (3) ◽  
pp. 711-719 ◽  
Author(s):  
Javed Iqbal ◽  
David C. Mitchell ◽  
Daniel W. Barker ◽  
Fernando Miguez ◽  
John E. Sawyer ◽  
...  

Author(s):  
Syezlin Hasan ◽  
James C. R. Smart ◽  
Rachel Hay ◽  
Sharyn Rundle-Thiele

Research focused on understanding wider systemic factors driving behavioral change is limited with a dominant focus on the role of individual farmer and psychosocial factors for farming practice change, including reducing fertilizer application in agriculture. Adopting a wider systems perspective, the current study examines change and the role that supporting services have on fertilizer application rate change. A total of 238 sugarcane growers completed surveys reporting on changes in fertilizer application along with factors that may explain behavior change. Logistic regressions and negative binomial count-data regressions were used to examine whether farmers had changed fertilizer application rates and if they had, how long ago they made the change, and to explore the impact of individual and system factors in influencing change. Approximately one in three sugarcane growers surveyed (37%) had changed the method they used to calculate fertilizer application rates for the cane land they owned/managed at some point. Logistic regression results indicated growers were less likely to change the basis for their fertilizer calculation if they regarded maintaining good relationships with other local growers as being extremely important, they had another source of off-farm income, and if they had not attended a government-funded fertilizer management workshop in the five years preceding the survey. Similar drivers promoted early adoption of fertilizer practice change; namely, regarding family traditions and heritage as being unimportant, having sole decision-making authority on farming activities and having attended up to 5 workshops in the five years prior to completing the survey. Results demonstrated the influence of government-funded services to support practice change.


2014 ◽  
Vol 94 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Adam Wile ◽  
David L. Burton ◽  
Mehdi Sharifi ◽  
Derek Lynch ◽  
Michael Main ◽  
...  

Wile, A., Burton, D. L., Sharifi, M., Lynch, D., Main, M. and Papadopoulos, Y. A. 2014. Effect of nitrogen fertilizer application rate on yield, methane and nitrous oxide emissions from switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.). Can. J. Soil Sci. 94: 129–137. This 2-yr (2008–2009) study conducted in Truro, Nova Scotia, measured plant biomass production (yield and ash content) and greenhouse gas emissions (methane and nitrous oxide), from the bioenergy crops switchgrass (SG; Panicum virgatum L.) and reed canarygrass (RCG; Phalaris arundinacea L.) receiving spring application of nitrogen fertilizer at 0, 40 and 120 kg N ha−1. In both years, crop yields were unresponsive to N fertilizer. In 2008, SG average yields were greater than RCG producing 7.0 vs. 4.6 Mg ha−1, respectively, while ash content was significantly greater for RCG in both years. Cumulative seasonal (May–November) N2O emissions were<1 kg N2O-N ha−1 in 2008 and<0.2 kg N2O-N ha−1 in 2009 with crop (SG>RCG) and N fertilizer (N120>N40=N0) effects found in 2008 only. Nitrate exposure was greater for SG in 2008 only, but responded to N fertilization in both years (N120>N0). These crops were net sinks for methane and the magnitude of the sink was not influenced by crop type, N fertilization or year. Despite lower yields, the greenhouse gas intensity calculated for RCG (−2 to 20 kg CO2e t−1 biomass) was lower than for SG (8 – 60 kg CO2e t−1 biomass) as a result of lower N2O emissions.


Author(s):  
Muhammad Khalid Anser ◽  
Danish Iqbal Godil ◽  
Muhammad Azhar Khan ◽  
Abdelmohsen A. Nassani ◽  
Khalid Zaman ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2010 ◽  
Vol 7 (sup1) ◽  
pp. 223-234 ◽  
Author(s):  
Johannes Kros ◽  
Wim de Vries ◽  
Gert Jan Reinds ◽  
Jan Peter Lesschen ◽  
Gerard L. Velthof

2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


Sign in / Sign up

Export Citation Format

Share Document