scholarly journals The Potential Climatic Significance of the Global Reduction in Aviation During the Pandemic

Author(s):  
Sally Cairns

This paper argues that, in 2020, the beneficial atmospheric effect from the reduction in aviation may have been at least 7-8 times greater than that occurring from the reduction in fossil carbon dioxide emissions from all sectors. Specifically, compared to potential atmospheric effects in 2020 without the pandemic, the decrease in effective radiative forcing from reduced contrail-cirrus formation may have been in the order of 35mWm-2 in 2020, compared to a reduction of only 4-5mWm-2 from the drop in fossil CO2 emissions. Over time, pursuing a low carbon pathway generates benefits that mount up to be much more significant than 2020 effects might imply, and is essential to stabilise the climate. However, a twin-track policy focus may be needed, with more emphasis on reducing short-term climate forcing, to minimise the impacts of climate change now, and to avoid detrimental feedback events. Future policy decisions about aviation should be made in this context.

Author(s):  
Sally Cairns

This paper suggests that, in 2020, the beneficial atmospheric effect from the reduction in aviation could be at least 7-8 times as great as that occurring from the global reduction in fossil carbon dioxide emissions. Specifically, compared to potential atmospheric effects in 2020 without the pandemic, the decrease in effective radiative forcing from reduced contrail-cirrus formation may be in the order of 35mWm-2 in 2020, compared to a reduction of only 4-5mWm-2 from the drop in fossil CO2 emissions. Over time, pursuing a low carbon pathway generates benefits that mount up to be much more significant than 2020 effects might imply, and is essential to stabilise the climate. However, this paper argues that a twin-track policy focus may be needed, with more emphasis on reducing short-term climate forcing, to minimise the impacts of climate change now, and to avoid detrimental feedback events. Future policy decisions about aviation should be made in this context.


2012 ◽  
Vol 616-618 ◽  
pp. 1484-1489 ◽  
Author(s):  
Xu Shan ◽  
Hua Wang Shao

The coordination development of economy-energy-environment was discussed with traditional environmental loads model, combined with "decoupling" theory. Considering the possibilities of social and economic development, this paper set out three scenarios, and analyzed quantitatively the indexes, which affected carbon dioxide emissions, including population, per capita GDP, industrial structure and energy structure. Based on this, it forecasted carbon dioxide emissions in China in future. By comparing the prediction results, it held that policy scenario was the more realistic scenario, what’s more it can achieve emission reduction targets with the premise of meeting the social and economic development goals. At last, it put forward suggestions to implement successfully policy scenario, from energy structure, industrial structure, low-carbon technology and so on.


2021 ◽  
Vol 13 (10) ◽  
pp. 5720
Author(s):  
Han Phoumin ◽  
Sopheak Meas ◽  
Hatda Pich An

Many players have supported infrastructure development in the Mekong Subregion, bridging the missing links in Southeast Asia. While the influx of energy-related infrastructure development investments to the region has improved the livelihoods of millions of people on the one hand, it has brought about a myriad of challenges to the wider region in guiding investments for quality infrastructure and for promoting a low-carbon economy, and energy access and affordability, on the other hand. Besides reviewing key regional initiatives for infrastructure investment and development, this paper examines energy demand and supply, and forecasts energy consumption in the subregion during 2017–2050 using energy modeling scenario analysis. The study found that to satisfy growing energy demand in the subregion, huge power generation infrastructure investment, estimated at around USD 190 billion–220 billion, is necessary between 2017 and 2050 and that such an investment will need to be guided by appropriate policy. We argue that without redesigning energy policy towards high-quality energy infrastructure, it is very likely that the increasing use of coal upon which the region greatly depends will lead to the widespread construction of coal-fired power plants, which could result in increased greenhouse gas and carbon dioxide emissions.


2021 ◽  
Vol 11 (5) ◽  
pp. 2009
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The depletion of fossil fuels and climate change concerns are drivers for the development and expansion of bioenergy. Promoting biomass is vital to move civilization toward a low-carbon economy. To meet European Union targets, it is required to increase the use of agricultural residues (including straw) for power generation. Using agricultural residues without accounting for their energy consumed and carbon dioxide emissions distorts the energy and environmental balance, and their analysis is the purpose of this study. In this paper, a life cycle analysis method is applied. The allocation of carbon dioxide emissions and energy inputs in the crop production by allocating between a product (grain) and a byproduct (straw) is modeled. Selected crop yield and the residue-to-crop ratio impact on the above indicators are investigated. We reveal that straw formation can consume between 30% and 70% of the total energy inputs and, therefore, emits relative carbon dioxide emissions. For cereal crops, this energy can be up to 40% of the lower heating value of straw. Energy and environmental indicators of a straw return-to-field technology and straw power generation systems are examined.


2020 ◽  
Author(s):  
Timothy Andrews ◽  
Christopher J Smith ◽  
Gunnar Myhre ◽  
Piers Forster ◽  
Robin Chadwick ◽  
...  

2013 ◽  
Vol 17 (11) ◽  
pp. 4401-4413 ◽  
Author(s):  
J. S. Deems ◽  
T. H. Painter ◽  
J. J. Barsugli ◽  
J. Belnap ◽  
B. Udall

Abstract. The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with increased climate forcing. These results have implications for water management and suggest that dust abatement efforts could be an important component of any climate adaptation strategies in the UCRB.


2016 ◽  
Vol 9 (8) ◽  
pp. 3477-3490 ◽  
Author(s):  
Nir Bluvshtein ◽  
J. Michel Flores ◽  
Lior Segev ◽  
Yinon Rudich

Abstract. Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol–radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.


2017 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. Following Part 1 (Permadi et al., 2017a) which focuses on the preparation of emission input data and evaluation of WRF/CHIMERE performance in 2007, this paper presents Part 2 of our research detailing the quantification of co-benefits resulted in the future (2030) from black carbon (BC) emission reduction measures for Southeast Asia (SEA) countries. The business as usual (BAU2030) projected emissions from the base year of 2007 (BY2007) assuming no intervention with the linear projection of the emissions based on the past decadal activity data (Indonesia and Thailand) and the sectoral GDP growth for other countries. The RED2030 featured measures to cut down emission in major four source sectors in Indonesia and Thailand (on-road transport, residential cooking, industry, and biomass open burning) while for other countries the representative concentration pathway 8.5 (RCP8.5) emissions were assumed. WRF/CHIMERE simulated levels of aerosol species under BAU2030 and RED2030 for the SEA domain using the base year meteorology and 2030 boundary conditions from LMDZ/INCA. The extended aerosol optical depth module (AODEM) calculated the total columnar AOD and BC AOD assuming the internal mixing state for the two future scenarios. Health benefits were analyzed in term of the avoided number of premature deaths associated with ambient PM2.5 reduction while the climate benefits were quantified using the reduction in the BC radiative forcing under RED2030. Under BAU2030, the average number of the premature deaths per 100,000 population in the domain would increase by 30 from BY2007 while under RED2030 the premature deaths would be cut-down (avoided) by 59 from the RED2030. In 2007, the maximum annual average BC radiative forcing in SEA countries was 0.98 W m−2 which would increase to 2.0 W m−2 under BAU2030 and 1.4 W m−2 under RED2030. Substantial co-benefits on human health and BC climate forcing reduction in SEA could be resulted from the emission measures incorporated in RED2030. Future works should consider other benefits such as for the agricultural crop production, and the cost benefit analysis of the measures implementation to provide relevant information for policy making.


2022 ◽  
Vol 1 (15) ◽  
pp. 71-75
Author(s):  
Dmitriy Kononov

The strategy of low-carbon development of the economy and energy of Russia provides for the introduction of a fee (tax) for carbon dioxide emissions by power plants. This will seriously affect their prospective structure and lead to an increase in electricity prices. The expected neg-ative consequences for national and energy security are great. But serious and multilateral research is needed to properly assess these strategic threats


Sign in / Sign up

Export Citation Format

Share Document