scholarly journals Comparative Analysis of C++ and Python in Terms of Memory and Time

Author(s):  
Farzeen Zehra ◽  
Maha Javed ◽  
Darakhshan Khan ◽  
Maria Pasha

In this era of technology, programming has become more significant than ever before. Python and C++ are both widely used programming languages. Python, the most popular programming language in today’s world, is a high-level object-oriented language whereas C++, the language behind most operating systems, is a low-level object-oriented language. In this paper, we present a comparative study of Python and C++. This paper discusses the introduction to these languages, their memory management techniques, and the reasons behind their program execution speed. Furthermore, we analyzed the execution time and memory used by multiple algorithms in both the languages with best, average, and worst cases. They are also compared with respect to the benefits and issues related to them. Results indicate that C++ is faster than Python in execution speed but Python serves as a better language for beginners due to its simplicity. Moreover, for the best results, the language should be selected according to the type of project.

2019 ◽  
Author(s):  
Budiman

During this period continued to develop computer software, programming language was no exception. At the start of the era of low level programming languages, then developed a high level programming language. It is characterized by the appearance of a method of programming offered by a programming language, that is, object-oriented programming (OOP). IDE (Integrated Development Environment) is a computer program that has some facilities that are required in the development of the software. The purpose of the IDEA is to provide all the necessary utilities in building software. As for the type of software text editor that can be used to manipulate the source code hereinafter referred to as the source code of programming languages such as Ultraedit, JediEdit, ClearEdit, cEdit, the Golden Pen, and so on. PuniEdit software is a text-based editor software that can simplify the user through correction, insertion, and modification of the source code. PuniEdit software is built using Borland Delphi 7.0 and SynEdit component. This software can be used for the Pascal programming language, C++ and HTML. In addition, the software PuniEdit can perform management of the token. This PuniEdit software, the user can clearly see every occurrence of the type of token as keywords (reserved word), identifier, operator, and so on.Keywords: Source code, programming language, source code is scanned.


2006 ◽  
Vol 14 (2) ◽  
pp. 45-59
Author(s):  
Dries Kimpe ◽  
Stefan Vandewalle ◽  
Stefaan Poedts

Every modern operating system provides some form of virtual memory to its applications. Usually, a hardware memory management unit (MMU) exists to efficiently support this. Although most operating systems allow user programs to indirectly control the MMU, few programs or programming languages actually make use of this facility. This article explores how the MMU can be used to enhance memory handling for resizable arrays. A reference implementation in C++ demonstrates its usability and superiority compared to the standard C++ vector class, and how to combine the scheme with an object-oriented environment. A number of other improvements, based on newly emerged insights in C++ are also presented.


2020 ◽  
Author(s):  
Cut Nabilah Damni

AbstrakSoftware komputer atau perangkat lunak komputer merupakan kumpulan instruksi (program atau prosedur) untuk dapat melaksanakan pekerjaan secara otomatis dengan cara mengolah atau memproses kumpulan intruksi (data) yang diberikan. (Yahfizham, 2019 : 19) Sebagian besar dari software komputer dibuat oleh (programmer) dengan menggunakan bahasa pemprograman. Orang yang membuat bahasa pemprograman menuliskan perintah dalam bahasa pemprograman seperti layaknya bahasa yang digunakan oleh orang pada umumnya dalam melakukan perbincangan. Perintah-perintah tersebut dinamakan (source code). Program komputer lainnya dinamakan (compiler) yang digunakan pada (source code) dan kemudian mengubah perintah tersebut kedalam bahasa yang dimengerti oleh komputer lalu hasilnya dinamakan program executable (EXE). Pada dasarnya, komputer selalu memiliki perangkat lunak komputer atau software yang terdiri dari sistem operasi, sistem aplikasi dan bahasa pemograman.AbstractComputer software or computer software is a collection of instructions (programs or procedures) to be able to carry out work automatically by processing or processing the collection of instructions (data) provided. (Yahfizham, 2019: 19) Most of the computer software is made by (programmers) using the programming language. People who make programming languages write commands in the programming language like the language used by people in general in conducting conversation. The commands are called (source code). Other computer programs called (compilers) are used in (source code) and then change the command into a language understood by the computer and the results are called executable programs (EXE). Basically, computers always have computer software or software consisting of operating systems, application systems and programming languages.


Author(s):  
Muhammad Shumail Naveed ◽  
Muhammad Sarim ◽  
Kamran Ahsan

Programming is the core of computer science and due to this momentousness a special care is taken in designing the curriculum of programming courses. A substantial work has been conducted on the definition of programming courses, yet the introductory programming courses are still facing high attrition, low retention and lack of motivation. This paper introduced a tiny pre-programming language called LPL (Learners Programming Language) as a ZPL (Zeroth Programming Language) to illuminate novice students about elementary concepts of introductory programming before introducing the first imperative programming course. The overall objective and design philosophy of LPL is based on a hypothesis that the soft introduction of a simple and paradigm specific textual programming can increase the motivation level of novice students and reduce the congenital complexities and hardness of the first programming course and eventually improve the retention rate and may be fruitful in reducing the dropout/failure level. LPL also generates the equivalent high level programs from user source program and eventually very fruitful in understanding the syntax of introductory programming languages. To overcome the inherent complexities of unusual and rigid syntax of introductory programming languages, the LPL provide elementary programming concepts in the form of algorithmic and plain natural language based computational statements. The initial results obtained after the introduction of LPL are very encouraging in motivating novice students and improving the retention rate.


2021 ◽  
Vol 4 ◽  
pp. 78-87
Author(s):  
Yury Yuschenko

In the Address Programming Language (1955), the concept of indirect addressing of higher ranks (Pointers) was introduced, which allows the arbitrary connection of the computer’s RAM cells. This connection is based on standard sequences of the cell addresses in RAM and addressing sequences, which is determined by the programmer with indirect addressing. Two types of sequences allow programmers to determine an arbitrary connection of RAM cells with the arbitrary content: data, addresses, subroutines, program labels, etc. Therefore, the formed connections of cells can relate to each other. The result of connecting cells with the arbitrary content and any structure is called tree-shaped formats. Tree-shaped formats allow programmers to combine data into complex data structures that are like abstract data types. For tree-shaped formats, the concept of “review scheme” is defined, which is like the concept of “bypassing” trees. Programmers can define multiple overview diagrams for the one tree-shaped format. Programmers can create tree-shaped formats over the connected cells to define the desired overview schemes for these connected cells. The work gives a modern interpretation of the concept of tree-shaped formats in Address Programming. Tree-shaped formats are based on “stroke-operation” (pointer dereference), which was hardware implemented in the command system of computer “Kyiv”. Group operations of modernization of computer “Kyiv” addresses accelerate the processing of tree-shaped formats and are designed as organized cycles, like those in high-level imperative programming languages. The commands of computer “Kyiv”, due to operations with indirect addressing, have more capabilities than the first high-level programming language – Plankalkül. Machine commands of the computer “Kyiv” allow direct access to the i-th element of the “list” by its serial number in the same way as such access is obtained to the i-th element of the array by its index. Given examples of singly linked lists show the features of tree-shaped formats and their differences from abstract data types. The article opens a new branch of theoretical research, the purpose of which is to analyze the expe- diency of partial inclusion of Address Programming in modern programming languages.


Author(s):  
Peretz Shoval

The term “object oriented” spread in the last decade and a half, throughout many fields of computing, including the analysis and design of information systems (IS). The use of the OO approach began in the early 1970s in fields such as computers architecture, operating systems, and artificial intelligence. But the main field to which the approach penetrated was programming languages, beginning with Simula and then with Smalltalk. Some years passed by until the approach became popular in the programming field. Reasons for the vigorous penetration of the approach include the emergence of the windows-based graphical interfaces technology, the desire to economize development costs by reusing existing software, and the transition from centralized computing to distributed- and Internet-based computing. As aforesaid, the approach penetrated into other fields of computing due to its success in the field of programming, including the field of analysis and design of IS.


Author(s):  
Vincenzo De Florio

The programming language itself is the focus of this chapter: Fault-tolerance is not embedded in the program (as it is the case e.g. for single-version fault-tolerance), nor around the language (through compilers or translators); on the contrary, faulttolerance is provided through the syntactical structures and the run-time executives of fault-tolerance programming languages. Also in this case a significant part of the complexity of dependability enforcement is moved from each single code to the architecture, in this case the programming language. Many cases exist of fault-tolerance programming languages; this chapter proposes a few of them, considering three cases: Object-oriented languages, functional languages, and hybrid languages. In particular it is discussed the case of Oz, a multi-paradigm programming language that achieves both transparent distribution and translucent failure handling.


1995 ◽  
Vol 5 (1) ◽  
pp. 81-110 ◽  
Author(s):  
Peter Achten ◽  
Rinus Plasmeijer

AbstractFunctional programming languages have banned assignment because of its undesirable properties. The reward of this rigorous decision is that functional programming languages are side-effect free. There is another side to the coin: because assignment plays a crucial role in Input/Output (I/O), functional languages have a hard time dealing with I/O. Functional programming languages have therefore often been stigmatised as inferior to imperative programming languages because they cannot deal with I/O very well. In this paper, we show that I/O can be incorporated in a functional programming language without loss of any of the generally accepted advantages of functional programming languages. This discussion is supported by an extensive account of the I/O system offered by the lazy, purely functional programming language Clean. Two aspects that are paramount in its I/O system make the approach novel with respect to other approaches. These aspects are the technique of explicit multiple environment passing, and the Event I/O framework to program Graphical User I/O in a highly structured and high-level way. Clean file I/O is as powerful and flexible as it is in common imperative languages (one can read, write, and seek directly in a file). Clean Event I/O provides programmers with a high-level framework to specify complex Graphical User I/O. It has been used to write applications such as a window-based text editor, an object based drawing program, a relational database, and a spreadsheet program. These graphical interactive programs are completely machine independent, but still obey the look-and-feel of the concrete window environment being used. The specifications are completely functional and make extensive use of uniqueness typing, higher-order functions, and algebraic data types. Efficient implementations are present on the Macintosh, Sun (X Windows under Open Look) and PC (OS/2).


2021 ◽  
Author(s):  
◽  
Frank Schmager

<p>GO is a new object-oriented programming language developed at Google by Rob Pike, Ken Thompson, and others. GO has the potential to become a major programming language. GO deserves an evaluation.  Design patterns document reoccurring problems and their solutions. The problems presented are programming language independent. Their solutions, however, are dependent on features programming languages provide. In this thesis we use design patterns to evaluate GO. We discuss GO features that help or hinder implementing design patterns, and present a pattern catalogue of all 23 Gang-of-Four design patterns with GO specific solutions. Furthermore, we present GoHotDraw, a GO port of the pattern dense drawing application framework JHotDraw. We discuss design and implementation differences between the two frameworks with regards to GO.</p>


2021 ◽  
Vol 7 (1) ◽  
pp. 26
Author(s):  
Raquel Vázquez Díaz ◽  
Martiño Rivera-Dourado ◽  
Rubén Pérez-Jove ◽  
Pilar Vila Avendaño ◽  
José M. Vázquez-Naya

Memory management is one of the main tasks of an Operating System, where the data of each process running in the system is kept. In this context, there exist several types of attacks that exploit memory-related vulnerabilities, forcing Operating Systems to feature memory protection techniques that make difficult to exploit them. One of these techniques is ASLR, whose function is to introduce randomness into the virtual address space of a process. The goal of this work was to measure, analyze and compare the behavior of ASLR on the 64-bit versions of Windows 10 and Ubuntu 18.04 LTS. The results have shown that the implementation of ASLR has improved significantly on these two Operating Systems compared to previous versions. However, there are aspects, such as partial correlations or a frequency distribution that is not always uniform, so it can still be improved.


Sign in / Sign up

Export Citation Format

Share Document