scholarly journals Achieving Ultra-High Performance Concrete by Using Packaging Models in Combination with Nanoadditions

Author(s):  
Jesús Díaz ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

This paper describes the packaging models that are fundamental for the design of ultra-high-performance concrete (UHPC), and their evolution. They are divided into two large groups: continuous and discrete models. The latter are those that provide the best answer in obtaining an adequate simulation of the packing of the particles up to nanometric size. This includes the interaction among the particles by means of loosening and wall coefficients, allowing a simulation of the virtual and real compactness of such particles. In addition, a relationship between virtual and real compactness is obtained, through the compaction index, which may simulate the energy of compaction that the particles undergo in their placement in the mold. The use of last-generation additives allows such models to be implemented with water-cement (w/c) ratios close to 0.18. However, the premise of maximum packing as a basic pillar for the production of UHPC should not be the only one. The cement hydration process affected by nanoadditions and the ensuing effectiveness in the properties in both fresh and hardened state according to the respective percentages in the mixture should also be studied. An adequate ratio and proportion of these additions may lead to an obtaining of better results even with lower levels of compactness.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1414
Author(s):  
Jesús Díaz ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

This paper describes the packing models that are fundamental for the design of ultra-high-performance concrete (UHPC) and their evolution. They are divided into two large groups: continuous and discrete models. The latter are those that provide the best method for achieving an adequate simulation of the packing of the particles up to nanometric size. This includes the interaction among the particles by means of loosening and wall coefficients, allowing a simulation of the virtual and real compactness of such particles. In addition, a relationship between virtual and real compactness is obtained through the compaction index, which may simulate the energy of compaction so that the particles are placed in the mold. The use of last-generation additives allows such models to be implemented with water–cement (w/c) ratios close to 0.18. However, the premise of maximum packing as a basic pillar for the production of UHPC should not be the only one. The cement hydration process affected by nanoadditives and the ensuing effectiveness of the properties in both fresh and hardened states according to the respective percentages in the mixture should also be studied. The characterization tests of the aggregates and additions (dry and wet compactness, granulometry, density and absorption) have been carried out in order to implement them numerically in the polydisperse packing model to obtain the compactness of the mixture. Establishing fixed percentages of nanoadditives in the calculation of the mixture’s compactness. The adequate ratio and proportion of these additions can lead to better results even at lower levels of compactness. The compressive strength values obtained at seven days are directly proportional to the calculated compactness. However, at the age of 28 days, better results were obtained in mixes with lower cement contents, fewer additions and lower compactness. Thus, mixes with lower cement contents and additions (silica fume and limestone filler) with a compactness of φ = 0.775 reached 80.1 MPa of strength at 7 days, which is lower than mixes with higher cement contents and number of additions (SF, limestone filler and nanosilica), which achieved a compactness of φ = 0.789 and 93.7 MPa for compressive strength. However, at 28 days the result was reversed with compressive strengths of 124.6 and 121.7 MPa, respectively.


2021 ◽  
Vol 64 (2) ◽  
pp. 109-117
Author(s):  
Stefan Mitrović ◽  
Dragana Popović ◽  
Miroslav Tepavčević ◽  
Dimitrije Zakić

This paper presents the results of the authors' laboratory testing of physical, mechanical and durability properties of Ultra-high Performance Concrete (UHPC). The short history of development and application of UHPC concrete is presented in the first part of this paper while the second part deals with the experimental investigation, presenting the results of material characterization obtained from physical-mechanical and durability tests. Based on the results shown in the paper, the mean value of compressive strength obtained at 28 days is 114 MPa, with the average density of 2270 kg/m3 in hardened state. The results showed that tested UHPC belongs to the highest class of water impermeability V-III, as well as the highest class MS0 (without visible damage) in a simulated freeze-thaw environment and de-icing salt attack test. Also, the highest class XM3 for abrasion resistance was achieved. Additional tests showed that the tested concrete fulfils the requirements for the highest exposure classes XC4 and XD4, in terms of resistance to carbonation and the penetration of chloride ions. Conclusions and recommendations for further development and possible application of UHPC are presented at the end of paper.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2950
Author(s):  
Nankyoung Lee ◽  
Yeonung Jeong ◽  
Hyunuk Kang ◽  
Juhyuk Moon

This study investigated the heat-induced acceleration of cement hydration and pozzolanic reaction focusing on mechanical performance and structural modification at the meso- and micro-scale. The pozzolanic reaction was implemented by substituting 20 wt.% of cement with silica fume, considered the typical dosage of silica fume in ultra-high performance concrete. By actively consuming a limited amount of water and outer-formed portlandite on the unreacted cement grains, it was confirmed that high-temperature curing greatly enhances the pozzolanic reaction when compared with cement hydration under the same environment. The rate of strength development from the dual reactions of cement hydration and pozzolanic reaction was increased. After the high-temperature curing, further strength development was negligible because of the limited space availability and preconsumption of water under a low water-to-cement environment. Since the pozzolanic reaction does not directly require the anhydrous cement, the reaction can be more easily accelerated under restrained conditions because it does not heavily rely on the diffusion of the limited amount of water. Therefore, it significantly increases the mean chain length of the C–S–H, the size of C–S–H globules with a higher surface fractal dimension. This finding will be helpful in understanding the complicated hydration mechanism of high-strength concrete or ultra-high performance concrete, which has a very low water-to-cement ratio.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document