scholarly journals Motorway Measurement Campaign to Support R&D Activities in the Field of Automated Driving Technologies

Author(s):  
Viktor Tihanyi ◽  
Tettamanti Tamás ◽  
Mihály Csonthó ◽  
Arno Eichberger ◽  
Dániel Ficzere ◽  
...  

The paper presents the measurement campaign carried out on a real-world motorway stretch of Hungary with the participation of both industrial and academic partners from Austria and Hungary. The measurement included vehicle based as well as infrastructure based sensor data. The obtained results will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles - equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization - carried out special test scenarios while collecting detailed data using different sensors. All test runs were recorded by both vehicles and infrastructure. As a complementary task, the available 5G network was monitored and tested. The paper also showcases application examples based on the measurement campaign data, in which the added value of having access to the ground truth labeling and the created UHD map of the motorway section becomes apparent. In order to present our work transparently, a part of the measured data have been shared openly such that interested automotive as well as academic parties may use it for their own purposes.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2169
Author(s):  
Viktor Tihanyi ◽  
Tamás Tettamanti ◽  
Mihály Csonthó ◽  
Arno Eichberger ◽  
Dániel Ficzere ◽  
...  

A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles—equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization—carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.


2021 ◽  
Vol 13 (22) ◽  
pp. 4525
Author(s):  
Junjie Zhang ◽  
Kourosh Khoshelham ◽  
Amir Khodabandeh

Accurate and seamless vehicle positioning is fundamental for autonomous driving tasks in urban environments, requiring the provision of high-end measuring devices. Light Detection and Ranging (lidar) sensors, together with Global Navigation Satellite Systems (GNSS) receivers, are therefore commonly found onboard modern vehicles. In this paper, we propose an integration of lidar and GNSS code measurements at the observation level via a mixed measurement model. An Extended Kalman-Filter (EKF) is implemented to capture the dynamic of the vehicle movement, and thus, to incorporate the vehicle velocity parameters into the measurement model. The lidar positioning component is realized using point cloud registration through a deep neural network, which is aided by a high definition (HD) map comprising accurately georeferenced scans of the road environments. Experiments conducted in a densely built-up environment show that, by exploiting the abundant measurements of GNSS and high accuracy of lidar, the proposed vehicle positioning approach can maintain centimeter-to meter-level accuracy for the entirety of the driving duration in urban canyons.


2019 ◽  
Vol 59 (3) ◽  
pp. 169-180 ◽  
Author(s):  
Jianguo Yan ◽  
Chunguang Wang ◽  
Shengshi Xie ◽  
Lijuan Wang

How to accurately and efficiently measure the profiles of the terrain on which agricultural machines operate has been an ongoing research topic. In this study, a surface profiling apparatus (profiler) was developed to measure agricultural terrain profiles along parallel tracks. The profiler is mainly composed of sensor frames, an RTK-GNSS system (Real Time Kinematics-Global Navigation Satellite Systems), laser sensors, an Inertial Measurement Unit (IMU) sensor and a data acquisition system. Along with a full description of how the terrain profiles were produced, a methodology to compensate for the tractor motion was included in the sensor data analysis. In field profiling validation, two trapezoidal bumps with known dimensions were used to assess the ability of the terrain profiler to reproduce the vertical profiles of the bumps, resulting in root mean square error (RMSE) of 3.6-4.7 mm and 4.5-5.1 mm with profiling speeds of 1.02 and 2.56 km/h, respectively. In addition, a validation test was also conducted on an asphalt road by profiling a flat road with the measuring wheels of the profiler rolling on the flat section but with the tractor wheels driving over a trapezoidal bump to excite the tractor pitch and roll motion. The measured profiles then also exhibited a flat road, which showed the ability of the profiler to remove the tractor motion from the profiling measurements.


Author(s):  
Fabio Dovis ◽  
Luciano Musumeci ◽  
Nicola Linty ◽  
Marco Pini

This chapter deals with one of the major concerns for reliable use of Global Navigation Satellite Systems (GNSS), providing a description of intentional and unintentional threats, such as interference, jamming, and spoofing. Despite the fact that these phenomena have been studied since the early stages of Global Positioning System (GPS), they were mainly addressed for military applications of GNSS. However, a wide range of recent civil applications related to user safety or featuring financial implications would be deeply affected by interfering or spoofing signals intentionally created. For such a reason, added value processing algorithms are being studied and designed in order to embed in the receiver an interference reporting capability so that they can monitor and possibly mitigate interference events.


2018 ◽  
Vol 10 (11) ◽  
pp. 1856 ◽  
Author(s):  
Adriano Camps ◽  
Mercedes Vall·llossera ◽  
Hyuk Park ◽  
Gerard Portal ◽  
Luciana Rossato

The potential of Global Navigation Satellite Systems-Reflectometry (GNSS-R) techniques to estimate land surface parameters such as soil moisture (SM) is experimentally studied using 2014–2017 global data from the UK TechDemoSat-1 (TDS-1) mission. The approach is based on the analysis of the sensitivity to SM of different observables extracted from the Delay Doppler Maps (DDM) computed by the Space GNSS Receiver–Remote Sensing Instrument (SGR-ReSI) instrument using the L1 (1575.42 MHz) left-hand circularly-polarized (LHCP) reflected signals emitted by the Global Positioning System (GPS) navigation satellites. The sensitivity of different GNSS-R observables to SM and its dependence on the incidence angle is analyzed. It is found that the sensitivity of the calibrated GNSS-R reflectivity to surface soil moisture is ~0.09 dB/% up to 30° incidence angle, and it decreases with increasing incidence angles, although differences are found depending on the spatial scale used for the ground-truth, and the region. The sensitivity to subsurface soil moisture has been also analyzed using a network of subsurface probes and hydrological models, apparently showing some dependence, but so far results are not conclusive.


Author(s):  
Fabio Dovis ◽  
Luciano Musumeci ◽  
Nicola Linty ◽  
Marco Pini

This paper gives a classification of intentional and unintentional threats, such as interference, jamming and spoofing, and discusses some of the recent trends concerning techniques for their detection and mitigation. Despite the fact that these phenomena have been studied since the early stages of Global Positioning System (GPS), they were mainly addressed for military applications of Global Navigation Satellite Systems (GNSS). However, a wide range of recent civil applications related to user’s safety or featuring financial implications would be deeply affected by interfering or spoofing signals intentionally created. For such a reason, added value processing algorithms are being studied and designed, in order to improve accuracy and robustness of the receiver and to assure the reliability of the estimated position and time solution.


2021 ◽  
Author(s):  
Łukasz Sobczak ◽  
Katarzyna Filus ◽  
Joanna Domańska ◽  
Adam Domański

Abstract One of the most challenging topics in Robotics is Simultaneous Localization and Mapping (SLAM) in the indoor environments. Due to the fact that Global Navigation Satellite Systems cannot be successfully used in such environments, different data sources are used for this purpose, among others LiDARs (Light Detection and Ranging), which have advanced from numerous other technologies. Other embedded sensors can be used along with LiDARs to improve SLAM accuracy, e.g. the ones available in the Inertial Measurement Units and wheel odometry sensors. Evaluation of different SLAM algorithms and possible hardware configurations in real environments is time consuming and expensive. For that reason, in this paper we evaluate the performance of different hardware configuration used with Google Cartographer SLAM algorithms in simulation framework proposed in 1. Our use case is an actual robot used for room decontamination. The results show that for our robot the best hardware configuration consists of three LiDARs 2D, IMU and wheel odometry sensors. The proposed simulation-based methodology is a cost-effective alternative to real-world evaluation. It allows easy automation and provides access to precise ground truth. It is especially beneficial in the early stages of product design and to reduce the number of necessary real-life tests and hardware configurations.


Data ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 32
Author(s):  
Kathryn Elmer ◽  
Margaret Kalacska

A new ground truth dataset generated with high-accuracy Global Navigation Satellite Systems (GNSS) positional data of the invasive reed Phragmites australis subsp. australis within Îles-de-Boucherville National Park (Quebec, Canada) is described. The park is one of five study sites for the Canadian Airborne Biodiversity Observatory (CABO) and has stands of invasive P. australis spread throughout the park. Previously, within the context of CABO, no ground truth data had been collected within the park consolidating the locations of P. australis. This dataset was collected to serve as training and validation data for CABO airborne hyperspectral imagery acquired in 2019 to assist with the detection and mapping of P. australis. The locations of the ground truth points were found to be accurate within one pixel of the hyperspectral imagery. Overall, 320 ground truth points were collected, representing 158 locations where P. australis was present and 162 locations where it was absent. Auxiliary data includes field photographs and digitized field notes that provide context for each point.


Sign in / Sign up

Export Citation Format

Share Document