scholarly journals Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture: Global and Regional Differences and Impact of Different Spatial Scales

2018 ◽  
Vol 10 (11) ◽  
pp. 1856 ◽  
Author(s):  
Adriano Camps ◽  
Mercedes Vall·llossera ◽  
Hyuk Park ◽  
Gerard Portal ◽  
Luciana Rossato

The potential of Global Navigation Satellite Systems-Reflectometry (GNSS-R) techniques to estimate land surface parameters such as soil moisture (SM) is experimentally studied using 2014–2017 global data from the UK TechDemoSat-1 (TDS-1) mission. The approach is based on the analysis of the sensitivity to SM of different observables extracted from the Delay Doppler Maps (DDM) computed by the Space GNSS Receiver–Remote Sensing Instrument (SGR-ReSI) instrument using the L1 (1575.42 MHz) left-hand circularly-polarized (LHCP) reflected signals emitted by the Global Positioning System (GPS) navigation satellites. The sensitivity of different GNSS-R observables to SM and its dependence on the incidence angle is analyzed. It is found that the sensitivity of the calibrated GNSS-R reflectivity to surface soil moisture is ~0.09 dB/% up to 30° incidence angle, and it decreases with increasing incidence angles, although differences are found depending on the spatial scale used for the ground-truth, and the region. The sensitivity to subsurface soil moisture has been also analyzed using a network of subsurface probes and hydrological models, apparently showing some dependence, but so far results are not conclusive.

2020 ◽  
Vol 12 (4) ◽  
pp. 614 ◽  
Author(s):  
Komi Edokossi ◽  
Andres Calabia ◽  
Shuanggen Jin ◽  
Iñigo Molina

The understanding of land surface-atmosphere energy exchange is extremely important for predicting climate change and weather impacts, particularly the influence of soil moisture content (SMC) on hydrometeorological and ecological processes, which are also linked to human activities. Unfortunately, traditional measurement methods are expensive and cumbersome over large areas, whereas measurements from satellite active and passive microwave sensors have shown advantages for SMC monitoring. Since the launch of the first passive microwave satellite in 1978, more and more progresses have been made in monitoring SMC from satellites, e.g., the Soil Moisture Active and Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) missions in the last decade. Recently, new methods using signals of opportunity have been emerging, highlighting the Global Navigation Satellite Systems-Reflectometry (GNSS-R), which has wide applications in Earth’s surface remote sensing due to its numerous advantages (e.g., revisiting time, global coverage, low cost, all-weather measurements, and near real-time) when compared to the conventional observations. In this paper, a detailed review on the current SMC measurement techniques, retrieval approaches, products, and applications is presented, particularly the new and promising GNSS-R technique. Recent advances, future prospects and challenges are given and discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Fuhrmann ◽  
Matthew C. Garthwaite ◽  
Simon McClusky

Abstract Radar Corner Reflectors (CR) are increasingly used as reference targets for land surface deformation measurements with the Interferometric Synthetic Aperture Radar (InSAR) technique. When co-located with ground-based Global Navigation Satellite Systems (GNSS) infrastructure, InSAR observations at CR can be used to integrate relative measurements of surface deformation into absolute reference frames defined by GNSS. However, CR are also a potential source of GNSS multipath effects and may therefore have a detrimental effect on the GNSS observations. In this study, we compare daily GNSS coordinate time series and 30-second signal-to-noise ratio (SNR) observations for periods before and after CR deployment at a GNSS site. We find that neither the site coordinates nor the SNR values are significantly affected by the CR deployment, with average changes being within 0.1 mm for site coordinates and within 1 % for SNR values. Furthermore, we generate empirical site models by spatially stacking GNSS observation residuals to visualise and compare the spatial pattern in the surroundings of GNSS sites. The resulting stacking maps indicate oscillating patterns at elevation angles above 60 degrees which can be attributed to the CR deployed at the analysed sites. The effect depends on the GNSS antenna used at a site with the magnitude of multipath patterns being around three times smaller for a high-quality choke ring antenna compared to a ground plane antenna without choke rings. In general, the CR-induced multipath is small compared to multipath effects at other GNSS sites located in a different environment (e. g. mounted on a building).


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2169
Author(s):  
Viktor Tihanyi ◽  
Tamás Tettamanti ◽  
Mihály Csonthó ◽  
Arno Eichberger ◽  
Dániel Ficzere ◽  
...  

A spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles—equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization—carried out special test scenarios while collecting detailed data using different sensors. All of the test runs were recorded by both vehicles and infrastructure. The paper also showcases application examples to demonstrate the viability of the collected data having access to the ground truth labeling. This data set may support a large variety of solutions, for the test and validation of different kinds of approaches and techniques. As a complementary task, the available 5G network was monitored and tested under different radio conditions to investigate the latency results for different measurement scenarios. A part of the measured data has been shared openly, such that interested automotive and academic parties may use it for their own purposes.


2008 ◽  
Vol 61 (2) ◽  
pp. 221-237 ◽  
Author(s):  
Terry Moore ◽  
Chris Hill ◽  
Andy Norris ◽  
Chris Hide ◽  
David Park ◽  
...  

A version of this paper was presented at ENC-GNSS 2007, Geneva. Its reproduction was kindly authorised by the ENC-GNSS 07 Paper Selection Committee.The General Lighthouse Authorities of the UK & Ireland commissioned an assessment of the impact that the integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) would have on the aids to navigation (AtoN) services currently provided, and those to be provided in the future. There is concern about the vulnerability of GNSS, and the provision of complementary and backup systems is seen to be of great importance. The integration of INS could provide an independent and self-contained navigation system, for a limited time period, invulnerable to external intentional or unintentional interference, or the influences of changes in national policies. The study included an analysis of the potential use of GNSS-INS in three of the four phases of a vessel's voyage: coastal, port approach and docking. The project consisted of a technology assessment, looking at the different inertial technologies that might be suitable for each phase. This was followed by a technology proving stage, evaluating suitable equipment using simulation and field trials to prove that the claimed performance could be achieved in practice. The final stage of the project was to assess the effects of the availability of such systems on existing and planned aids to navigation services.


Author(s):  
N. Sánchez ◽  
A. Alonso-Arroyo ◽  
J. Martínez-Fernández ◽  
A. Camps ◽  
A. González-Zamora ◽  
...  

An airborne campaign was performed during August, 2014 in an agricultural area in the Duero basin (Spain) in order to appraise the synergy between very different sources of Earth Observation imagery, and very different instruments for soil moisture retrieval. During the flight, an intensive field campaign comprising soil, plant and spectral measurements was carried out. An innovative sensor based on the Global Navigation Satellite Systems Reflectometry (GNSS-R) was on board the manned vehicle, the Light Airborne Reflectometer for GNSS-R Observations (LARGO) engineered by the Universitat Politècnica de Catalunya. While the synergy between thermal, optical and passive microwave spectra observations is well known for vegetation parameters and soil moisture retrievals, the experiment aimed to evaluate the synergy of GNSS-R reflectivity with a time-collocated Landsat 8 imagery for soil moisture retrieval under semiarid climatic conditions. LARGO estimates, field measurements, and optical, NIR, SWIR and thermal bands from Landsat 8 were compared. Results showed that the joint use of GNSS-R reflectivity with vegetation and water indices together with thermal maps from Landsat 8 thoroughly improved the soil moisture estimation.


2020 ◽  
Vol 14 (6) ◽  
pp. 1909-1917 ◽  
Author(s):  
Jessica Cartwright ◽  
Christopher J. Banks ◽  
Meric Srokosz

Abstract. Improved digital elevation models (DEMs) of the Antarctic and Greenland ice sheets are presented, which have been derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R). This builds on a previous study (Cartwright et al., 2018) using GNSS-R to derive an Antarctic DEM but uses improved processing and an additional 13 months of measurements, totalling 46 months of data from the UK TechDemoSat-1 satellite. A median bias of under 10 m and root-mean-square errors (RMSEs) of under 53 m for the Antarctic and 166 m for Greenland are obtained, as compared to existing DEMs. The results represent, compared to the earlier study, a halving of the median bias to 9 m, an improvement in coverage of 18 %, and a 4 times higher spatial resolution (now gridded at 25 km). In addition, these are the first published satellite altimetry measurements of the region surrounding the South Pole. Comparisons south of 88∘ S yield RMSEs of less than 33 m when compared to NASA's Operation IceBridge measurements. Differences between DEMs are explored, the limitations of the technique are noted, and the future potential of GNSS-R for glacial ice studies is discussed.


2008 ◽  
Vol 61 (3) ◽  
pp. 473-484 ◽  
Author(s):  
Paul Williams ◽  
Sally Basker ◽  
Nick Ward

International discussions on the concept of e-navigation have identified a robust position-fixing system as one of the essential components. Global Navigation Satellite Systems (GNSS) are known to have vulnerabilities and onboard alternatives such as inertial systems have limitations. This paper considers the case for an enhanced version of the terrestrial radio-navigation system Loran to provide an alternative with performance comparable to GNSS. The paper reviews recent studies of inertial navigation systems and concludes that they do not present a fully capable backup to GNSS at present. Trials of enhanced Loran carried out in the UK by the General Lighthouse Authorities have shown that eLoran does have the potential to provide equivalent performance to GNSS over long periods and is a fully complementary system. The steps needed to provide eLoran on at least a regional basis, covering critical waterways, are considered. The international process for the specification and standardisation of eLoran is already underway and some projections are made about the timescale for full implementation, in the context of the introduction of e-Navigation. A version of this paper was first presented at NAV 07 held in Church House, London from 30th October – 1st November 2007.


2020 ◽  
Author(s):  
Jessica Cartwright ◽  
Christopher J. Banks ◽  
Meric Srokosz

Abstract. Improved Digital Elevation Models (DEMs) of the Antarctic and Greenland Ice Sheets are presented, derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R). This builds on a previous study (Cartwright et al., 2018) using GNSS-R to derive an Antarctic DEM but uses improved processing and an additional 13 months of measurements, totalling 46 months of data from the UK TechDemoSat-1 satellite. A median bias of under 10 m and root-mean-square (RMS) errors of under 53 m for the Antarctic and 166 m for Greenland are obtained, as compared to existing DEMs. The results represent, compared to the earlier study, a halving of the median bias to 9 m, an improvement in coverage of 18 %, and a four times higher spatial resolution (now gridded at 25 km). In addition, these are the first published satellite altimetry measurements of the region surrounding the South Pole. Comparisons south of 88° S yield RMS errors of less than 33 m when compared to NASA’s Operation IceBridge measurements. Differences between DEMs are explored and the future potential for ice sheet monitoring by this technique is noted.


2021 ◽  
Author(s):  
Łukasz Sobczak ◽  
Katarzyna Filus ◽  
Joanna Domańska ◽  
Adam Domański

Abstract One of the most challenging topics in Robotics is Simultaneous Localization and Mapping (SLAM) in the indoor environments. Due to the fact that Global Navigation Satellite Systems cannot be successfully used in such environments, different data sources are used for this purpose, among others LiDARs (Light Detection and Ranging), which have advanced from numerous other technologies. Other embedded sensors can be used along with LiDARs to improve SLAM accuracy, e.g. the ones available in the Inertial Measurement Units and wheel odometry sensors. Evaluation of different SLAM algorithms and possible hardware configurations in real environments is time consuming and expensive. For that reason, in this paper we evaluate the performance of different hardware configuration used with Google Cartographer SLAM algorithms in simulation framework proposed in 1. Our use case is an actual robot used for room decontamination. The results show that for our robot the best hardware configuration consists of three LiDARs 2D, IMU and wheel odometry sensors. The proposed simulation-based methodology is a cost-effective alternative to real-world evaluation. It allows easy automation and provides access to precise ground truth. It is especially beneficial in the early stages of product design and to reduce the number of necessary real-life tests and hardware configurations.


Author(s):  
Viktor Tihanyi ◽  
Tettamanti Tamás ◽  
Mihály Csonthó ◽  
Arno Eichberger ◽  
Dániel Ficzere ◽  
...  

The paper presents the measurement campaign carried out on a real-world motorway stretch of Hungary with the participation of both industrial and academic partners from Austria and Hungary. The measurement included vehicle based as well as infrastructure based sensor data. The obtained results will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold. On the one hand, road geometry was mapped with high precision in order to build Ultra High Definition (UHD) map of the test road. On the other hand, the vehicles - equipped with differential Global Navigation Satellite Systems (GNSS) for ground truth localization - carried out special test scenarios while collecting detailed data using different sensors. All test runs were recorded by both vehicles and infrastructure. As a complementary task, the available 5G network was monitored and tested. The paper also showcases application examples based on the measurement campaign data, in which the added value of having access to the ground truth labeling and the created UHD map of the motorway section becomes apparent. In order to present our work transparently, a part of the measured data have been shared openly such that interested automotive as well as academic parties may use it for their own purposes.


Sign in / Sign up

Export Citation Format

Share Document