scholarly journals Mapping Single Palm-Trees Species in Forest Environments with a Deep Convolutional Neural Network

Author(s):  
Luciene Sales Dagher Arce ◽  
Mauro dos Santos de Arruda ◽  
Danielle Elis Garcia Furuya ◽  
Lucas Prado Osco ◽  
Ana Paula Marques Ramos ◽  
...  

Accurately mapping individual tree species in densely forested environments is crucial to forest inventory. When considering only RGB images, this is a challenging task for many automatic photogrammetry processes. The main reason for that is the spectral similarity between species in RGB scenes, which can be a hindrance for most automatic methods. State-of-the-art deep learning methods could be capable of identifying tree species with an attractive cost, accuracy, and computational load in RGB images. This paper presents a deep learning-based approach to detect an important multi-use species of palm trees (Mauritia flexuosa; i.e., Buriti) on aerial RGB imagery. In South-America, this palm tree is essential for many indigenous and local communities because of its characteristics. The species is also a valuable indicator of water resources, which comes as a benefit for mapping its location. The method is based on a Convolutional Neural Network (CNN) to identify and geolocate singular tree species in a high-complexity forest environment, and considers the likelihood of every pixel in the image to be recognized as a possible tree by implementing a confidence map feature extraction. This study compares the performance of the proposed method against state-of-the-art object detection networks. For this, images from a dataset composed of 1,394 airborne scenes, where 5,334 palm-trees were manually labeled, were used. The results returned a mean absolute error (MAE) of 0.75 trees and an F1-measure of 86.9%. These results are better than both Faster R-CNN and RetinaNet considering equal experiment conditions. The proposed network provided fast solutions to detect the palm trees, with a delivered image detection of 0.073 seconds and a standard deviation of 0.002 using the GPU. In conclusion, the method presented is efficient to deal with a high-density forest scenario and can accurately map the location of single species like the M flexuosa palm tree and may be useful for future frameworks.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luciene Sales Dagher Arce ◽  
Lucas Prado Osco ◽  
Mauro dos Santos de Arruda ◽  
Danielle Elis Garcia Furuya ◽  
Ana Paula Marques Ramos ◽  
...  

AbstractAccurately mapping individual tree species in densely forested environments is crucial to forest inventory. When considering only RGB images, this is a challenging task for many automatic photogrammetry processes. The main reason for that is the spectral similarity between species in RGB scenes, which can be a hindrance for most automatic methods. This paper presents a deep learning-based approach to detect an important multi-use species of palm trees (Mauritia flexuosa; i.e., Buriti) on aerial RGB imagery. In South-America, this palm tree is essential for many indigenous and local communities because of its characteristics. The species is also a valuable indicator of water resources, which comes as a benefit for mapping its location. The method is based on a Convolutional Neural Network (CNN) to identify and geolocate singular tree species in a high-complexity forest environment. The results returned a mean absolute error (MAE) of 0.75 trees and an F1-measure of 86.9%. These results are better than Faster R-CNN and RetinaNet methods considering equal experiment conditions. In conclusion, the method presented is efficient to deal with a high-density forest scenario and can accurately map the location of single species like the M. flexuosa palm tree and may be useful for future frameworks.


2021 ◽  
Author(s):  
Luciene Sales Daguer Arce ◽  
Lucas Prado Osco ◽  
Mauro dos Santos Arruda ◽  
Danielle Ellis Garcia Furuya ◽  
Ana Paula Marques Ramos ◽  
...  

Abstract Accurately mapping individual tree species in densely forested environments is crucial to forest inventory. When considering only RGB images, this is a challenging task for many automatic photogrammetry processes. The main reason for that is the spectral similarity between species in RGB scenes, which can be a hindrance for most automatic methods. This paper presents a deep learning-based approach to detect an important multi-use species of palm trees (Mauritia flexuosa; i.e., Buriti) on aerial RGB imagery. In South-America, this palm tree is essential for many indigenous and local communities because of its characteristics. The species is also a valuable indicator of water resources, which comes as a benefit for mapping its location. The method is based on a Convolutional Neural Network (CNN) to identify and geolocate singular tree species in a high-complexity forest environment. The results returned a mean absolute error (MAE) of 0.75 trees and an F1-measure of 86.9%. These results are better than Faster R-CNN and RetinaNet methods considering equal experiment conditions. In conclusion, the method presented is efficient to deal with a high-density forest scenario and can accurately map the location of single species like the M flexuosa palm tree and may be useful for future frameworks.


2021 ◽  
Vol 13 (14) ◽  
pp. 2787
Author(s):  
Mohamed Barakat A. Gibril ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Abdallah Shanableh ◽  
Rami Al-Ruzouq ◽  
Aimrun Wayayok ◽  
...  

Large-scale mapping of date palm trees is vital for their consistent monitoring and sustainable management, considering their substantial commercial, environmental, and cultural value. This study presents an automatic approach for the large-scale mapping of date palm trees from very-high-spatial-resolution (VHSR) unmanned aerial vehicle (UAV) datasets, based on a deep learning approach. A U-Shape convolutional neural network (U-Net), based on a deep residual learning framework, was developed for the semantic segmentation of date palm trees. A comprehensive set of labeled data was established to enable the training and evaluation of the proposed segmentation model and increase its generalization capability. The performance of the proposed approach was compared with those of various state-of-the-art fully convolutional networks (FCNs) with different encoder architectures, including U-Net (based on VGG-16 backbone), pyramid scene parsing network, and two variants of DeepLab V3+. Experimental results showed that the proposed model outperformed other FCNs in the validation and testing datasets. The generalizability evaluation of the proposed approach on a comprehensive and complex testing dataset exhibited higher classification accuracy and showed that date palm trees could be automatically mapped from VHSR UAV images with an F-score, mean intersection over union, precision, and recall of 91%, 85%, 0.91, and 0.92, respectively. The proposed approach provides an efficient deep learning architecture for the automatic mapping of date palm trees from VHSR UAV-based images.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ahmed Jawad A. AlBdairi ◽  
Zhu Xiao ◽  
Mohammed Alghaili

The interest in face recognition studies has grown rapidly in the last decade. One of the most important problems in face recognition is the identification of ethnics of people. In this study, a new deep learning convolutional neural network is designed to create a new model that can recognize the ethnics of people through their facial features. The new dataset for ethnics of people consists of 3141 images collected from three different nationalities. To the best of our knowledge, this is the first image dataset collected for the ethnics of people and that dataset will be available for the research community. The new model was compared with two state-of-the-art models, VGG and Inception V3, and the validation accuracy was calculated for each convolutional neural network. The generated models have been tested through several images of people, and the results show that the best performance was achieved by our model with a verification accuracy of 96.9%.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1047 ◽  
Author(s):  
Ying Sun ◽  
Jianfeng Huang ◽  
Zurui Ao ◽  
Dazhao Lao ◽  
Qinchuan Xin

The monitoring of tree species diversity is important for forest or wetland ecosystem service maintenance or resource management. Remote sensing is an efficient alternative to traditional field work to map tree species diversity over large areas. Previous studies have used light detection and ranging (LiDAR) and imaging spectroscopy (hyperspectral or multispectral remote sensing) for species richness prediction. The recent development of very high spatial resolution (VHR) RGB images has enabled detailed characterization of canopies and forest structures. In this study, we developed a three-step workflow for mapping tree species diversity, the aim of which was to increase knowledge of tree species diversity assessment using deep learning in a tropical wetland (Haizhu Wetland) in South China based on VHR-RGB images and LiDAR points. Firstly, individual trees were detected based on a canopy height model (CHM, derived from LiDAR points) by the local-maxima-based method in the FUSION software (Version 3.70, Seattle, USA). Then, tree species at the individual tree level were identified via a patch-based image input method, which cropped the RGB images into small patches (the individually detected trees) based on the tree apexes detected. Three different deep learning methods (i.e., AlexNet, VGG16, and ResNet50) were modified to classify the tree species, as they can make good use of the spatial context information. Finally, four diversity indices, namely, the Margalef richness index, the Shannon–Wiener diversity index, the Simpson diversity index, and the Pielou evenness index, were calculated from the fixed subset with a size of 30 × 30 m for assessment. In the classification phase, VGG16 had the best performance, with an overall accuracy of 73.25% for 18 tree species. Based on the classification results, mapping of tree species diversity showed reasonable agreement with field survey data (R2Margalef = 0.4562, root-mean-square error RMSEMargalef = 0.5629; R2Shannon–Wiener = 0.7948, RMSEShannon–Wiener = 0.7202; R2Simpson = 0.7907, RMSESimpson = 0.1038; and R2Pielou = 0.5875, RMSEPielou = 0.3053). While challenges remain for individual tree detection and species classification, the deep-learning-based solution shows potential for mapping tree species diversity.


Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


Author(s):  
T. Mizoguchi ◽  
A. Ishii ◽  
H. Nakamura

<p><strong>Abstract.</strong> In this paper, we propose a new method for specifying individual tree species based on depth and curvature image creation from point cloud captured by terrestrial laser scanner and Convolutional Neural Network (CNN). Given a point cloud of an individual tree, the proposed method first extracts the subset of points corresponding to a trunk at breast-height. Then branches and leaves are removed from the extracted points by RANSAC -based circle fitting, and the depth image is created by globally fitting a cubic polynomial surface to the remaining trunk points. Furthermore, principal curvatures are estimated at each scanned point by locally fitting a quadratic surface to its neighbouring points. Depth images clearly capture the bark texture involved by its split and tear-off, but its computation is unstable and may fail to acquire bark shape in the resulting images. In contrast, curvature estimation enables stable computation of surface concavity and convexity, and thus it can well represent local geometry of bark texture in the curvature images. In comparison to the depth image, the curvature image enables accurate classification for slanted trees with many branches and leaves. We also evaluated the effectiveness of a multi-modal approach for species classification in which depth and curvature images are analysed together using CNN and support vector machine. We verified the superior performance of our proposed method for point cloud of Japanese cedar and cypress trees.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiajia Chen ◽  
Baocan Zhang

The task of segmenting cytoplasm in cytology images is one of the most challenging tasks in cervix cytological analysis due to the presence of fuzzy and highly overlapping cells. Deep learning-based diagnostic technology has proven to be effective in segmenting complex medical images. We present a two-stage framework based on Mask RCNN to automatically segment overlapping cells. In stage one, candidate cytoplasm bounding boxes are proposed. In stage two, pixel-to-pixel alignment is used to refine the boundary and category classification is also presented. The performance of the proposed method is evaluated on publicly available datasets from ISBI 2014 and 2015. The experimental results demonstrate that our method outperforms other state-of-the-art approaches with DSC 0.92 and FPRp 0.0008 at the DSC threshold of 0.8. Those results indicate that our Mask RCNN-based segmentation method could be effective in cytological analysis.


2019 ◽  
Author(s):  
Raghav Shroff ◽  
Austin W. Cole ◽  
Barrett R. Morrow ◽  
Daniel J. Diaz ◽  
Isaac Donnell ◽  
...  

AbstractWhile deep learning methods exist to guide protein optimization, examples of novel proteins generated with these techniques require a priori mutational data. Here we report a 3D convolutional neural network that associates amino acids with neighboring chemical microenvironments at state-of-the-art accuracy. This algorithm enables identification of novel gain-of-function mutations, and subsequent experiments confirm substantive phenotypic improvements in stability-associated phenotypes in vivo across three diverse proteins.


Sign in / Sign up

Export Citation Format

Share Document