scholarly journals A Thermodynamic Approach to Measuring Entropy in a Few-Electron Nanodevice

Author(s):  
Eugenia Pyurbeeva ◽  
Jan Mol

The entropy of a system gives a powerful insight into its microscopic degrees of freedom, however standard experimental ways of measuring entropy through heat capacity are hard to apply to nanoscale systems, as they require the measurement of increasingly small amounts of heat. Two alternative entropy measurement methods have been recently proposed for nanodevices: through charge balance measurements and transport properties. We describe a self-consistent thermodynamic framework for treating few-electron nanodevices which incorporates both existing entropy measurement methods, whilst highlighting several ongoing misconceptions. We show that both methods can be described as special cases of a more general relation and prove its applicability in systems with complex microscopic dynamics – those with many excited states of various degeneracies.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Charles B. Thorn

Abstract Although the energy spectrum of the Heisenberg spin chain on a circle defined by$$ H=\frac{1}{4}\sum \limits_{k=1}^M\left({\sigma}_k^x{\sigma}_{k+1}^x+{\sigma}_k^y{\sigma}_{k+1}^y+\Delta {\sigma}_k^z{\sigma}_{k+1}^z\right) $$ H = 1 4 ∑ k = 1 M σ k x σ k + 1 x + σ k y σ k + 1 y + Δ σ k z σ k + 1 z is well known for any fixed M, the boundary conditions vary according to whether M ∈ 4ℕ + r, where r = −1, 0, 1, 2, and also according to the parity of the number of overturned spins in the state, In string theory all these cases must be allowed because interactions involve a string with M spins breaking into strings with M1< M and M − M1 spins (or vice versa). We organize the energy spectrum and degeneracies of H in the case ∆ = 0 where the system is equivalent to a system of free fermions. In spite of the multiplicity of special cases, in the limit M → ∞ the spectrum is that of a free compactified worldsheet field. Such a field can be interpreted as a compact transverse string coordinate x(σ) ≡ x(σ) + R0. We construct the bosonization formulas explicitly in all separate cases, and for each sector give the Virasoro conformal generators in both fermionic and bosonic formulations. Furthermore from calculations in the literature for selected classes of excited states, there is strong evidence that the only change for ∆ ≠ 0 is a change in the compactification radius R0→ R∆. As ∆ → −1 this radius goes to infinity, giving a concrete example of noncompact space emerging from a discrete dynamical system. Finally we apply our work to construct the three string vertex implied by a string whose bosonic coordinates emerge from this mechanism.


1983 ◽  
Vol 410 (1) ◽  
pp. 125-136 ◽  
Author(s):  
S. Marcos ◽  
H. Flocard ◽  
P.H. Heenen

1983 ◽  
Vol 105 (1) ◽  
pp. 23-27 ◽  
Author(s):  
K. Sugimoto ◽  
J. Duffy

Many kinds of robot arms with five degrees of freedom are widely used in industry for arc welding, spray painting, assembling etc. It is necessary to be able to compute joint displacements when such devices are computer controlled. A solution to this problem is presented and the analysis is illustrated by a numerical example using the most common industrial robot with five axes. Further, special cases are discussed using screw theory.


2020 ◽  
Vol 87 (s1) ◽  
pp. s79-s84
Author(s):  
Qummar Zaman ◽  
Senan Alraho ◽  
Andreas König

AbstractThe conventional method for testing the performance of reconfigurable sensory electronics of industry 4.0 relies on the direct measurement methods. This approach gives higher accuracy but at the price of extremely high testing cost and does not utilize the new degrees of freedom for measurement methods enabled by industry 4.0. In order to reduce the test cost and use available resources more efficiently, a primary approach, called indirect measurements or alternative testing has been proposed using a non-intrusive sensor. Its basic principle consists in using the indirect measurements, in order to estimate the sensory electronics performance parameters without measuring directly. The non-intrusive property of the proposed method offers better performance of the sensing electronics and virtually applicable to any sensing electronics. Efficiency is evaluated in terms of model accuracy by using six different classical metrics. It uses an indirect current-feedback instrumentation amplifier (InAmp) as a test vehicle to evaluate the performance parameters of the circuit. The device is implemented using CMOS 0.35 μm technology. The achieved maximum value of average expected error metrics is 0.24, and the lowest value of correlation performance metrics is 0.91, which represent an excellent efficiency of InAmp performance predictor.


Author(s):  
Hong-Sen Yan ◽  
Meng-Hui Hsu

Abstract An analytical method is presented for locating all velocity instantaneous centers of linkage mechanisms with single or multiple degrees of freedom. The method is based on the fact that the coefficient matrix of the derived velocity equations for vector loops, independent inputs, and instantaneous centers is singular. This approach also works for special cases with kinematic indeterminacy or singular configurations.


2000 ◽  
Vol 41 (6) ◽  
pp. 17-24 ◽  
Author(s):  
F.-B. Frechen

Odour emissions can cause serious annoyance in the neighborhood of the emissions source. Thus, especially in densely populated areas, odour is a topic since several decades in Germany. Development of measurement possibilities and development of odour policy are connected, because formulation of standards as well as control of compliance with these standards need appropriate measurement methods. This paper gives a glimpse of the development of both aspects and thereafter explains the actual state of them inside Germany. Then some special notes will be presented concerning some special cases as for example waste technology, wastewater treatment technology and application at agriculture.


Author(s):  
Raffaele Di Gregorio ◽  
Alessandro Cammarata ◽  
Rosario Sinatra

The comparison of mechanisms with different topology or with different geometry, but with the same topology, is a necessary operation during the design of a machine sized for a given task. Therefore, tools that evaluate the dynamic performances of a mechanism are welcomed. This paper deals with the dynamic isotropy of 2-dof mechanisms starting from the definition introduced in a previous paper. In particular, starting from the condition that identifies the dynamically isotropic configurations, it shows that, provided some special cases are not considered, 2-dof mechanisms have at most a finite number of isotropic configurations. Moreover, it shows that, provided the dynamically isotropic configurations are excluded, the geometric locus of the configuration space that collects the points associated to configurations with the same dynamic isotropy is constituted by closed curves. This results will allow the classification of 2-dof mechanisms from the dynamic-isotropy point of view, and the definition of some methodologies for the characterization of the dynamic isotropy of these mechanisms. Finally, examples of applications of the obtained results will be given.


Author(s):  
Matthew P. Castanier ◽  
Yung-Chang Tan ◽  
Christophe Pierre

Abstract In this paper, a technique is presented for improving the efficiency of the Craig-Bampton method of Component Mode Synthesis (CMS). An eigenanalysis is performed on the partitions of the CMS mass and stiffness matrices that correspond to the so-called constraint modes. The resultant eigenvectors are referred to as “characteristic constraint modes,” since they represent the characteristic motion of the interface between the component structures. By truncating the characteristic constraint modes, a CMS model with a highly-reduced number of degrees of freedom may be obtained. An example of a cantilever plate is considered. It is shown that relatively few characteristic constraint modes are needed to yield accurate approximations of the lower natural frequencies. This method also provides physical insight into the mechanisms of vibration transmission in complex structures.


Sign in / Sign up

Export Citation Format

Share Document