scholarly journals Environmental Enrichment and Fluoxetine Neurogenic Stimuli Increase ß3-Tubulin Immature Neurons in Meninges Through Trkb-Mediated Signaling

Author(s):  
Stefania Zorzin ◽  
Andrea Corsi ◽  
Annachiara Pino ◽  
Alessia Amenta ◽  
Guido Francesco Fumagalli ◽  
...  

Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli including environmental enrichment (EE) and antidepressant treatment acting through BDNF-TrkB signaling. We have recently identified NPs in meninges, however menigneal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of 4 weeks fluoxetine administration or 1 week EE treatment on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of meningeal cell number and proliferation, we observed, in meninges, an increased number of β3-Tubulin+ immature neuronal cells. Lineage-tracing experiment confirmed that EE-induced β3-Tubulin+ immature neuronal cells present in meninges originated from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for this response, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced increase of β3-Tubulin+ immature neuronal cells in meninges.Overall these data showed, for the first time, that the meningeal niche responded to neurogenic stimuli by increasing the immature neuronal population through TrkB-mediated signaling. A better understanding of the neurogenic stimuli effects on NPs in meninges may be useful to improve the effectiveness of depression and mood disorders treatments.

2021 ◽  
Vol 22 (19) ◽  
pp. 10657
Author(s):  
Stefania Zorzin ◽  
Andrea Corsi ◽  
Francesca Ciarpella ◽  
Emanuela Bottani ◽  
Sissi Dolci ◽  
...  

Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced β3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Jirapa Chetsawang ◽  
Piyarat Govitrapong ◽  
Banthit Chetsawang

It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 939-939
Author(s):  
Albert Kolomansky ◽  
Naamit Deshet-Unger ◽  
Nathalie Ben-Califa ◽  
Zamzam Awida ◽  
Maria Ibrahim ◽  
...  

Background and aims: Erythropoietin (EPO) is the key regulator of red blood cell production, commonly used in clinical practice to treat certain forms of anemia. Our studies and those of others have demonstrated that EPO administration induces substantial trabecular bone loss. We proposed that EPO-induced bone loss is partially mediated by subsets of bone marrow (BM) B cells that express EPO-R. Mechanistically, EPO upregulates the surface expression of RANKL by BM B cells and augments B cell-derived osteoclastogenesis in vitro. We showed that the latter is likely mediated by pro-B cells expressing the MCS-F receptor (CD115) and capable of transdifferentiation to osteoclasts (Abstract # 1007, EHA 2017). Here we address the role of B cell-specific EPO-R in EPO-induced bone loss (i.e. at supra-physiological EPO levels). Moreover, we demonstrate, for the first time, the occurrence of B cell-derived osteoclastogenesis in vivo, a finding of critical importance in the field of osteohematology. Methods: In order to trace the B cell lineage from its earliest precursors, we used the MB1-Cre mouse line combined with either the R26R-EYFP or the EPO-Rfl/fl mice for lineage tracing and B cell-specific EPO-R knockdown, respectively. Sequential fluorescence and light microscopy were used for the demonstration of B cell-derived osteoclastogenesis in vivo. Human recombinant EPO was administered in vivo at a dose of 180IU thrice weekly for two weeks. Immunophenotyping of BM B cell populations was assessed by multi-color flow cytometry. Results: Using female MB1-Cre; EPO-Rfl/fl (cKD) mice, we found that B cell-specific EPO-R knockdown attenuated the profound EPO-induced trabecular bone loss in the proximal part of the femoral distal metaphysis (proximal BV/TV 0.034±0.012% vs 0.007±0.003% in the cKD vs control mice, p<0.05, Figure 1). Remarkably, this effect was observed despite the fact that cKD mice attained higher hemoglobin levels following EPO treatment (21.1±0.1 mg/dL vs 20.4±0.2 mg/dL in the cKD vs control mice, p<0.05). An EPO-induced increase in CD115+ Pro-B cells was observed in EPO-treated control mice but was absent in the cKD mice. The latter finding correlates with the observed bone loss and indicates that the increased number of MCSF-R-expressing pro-B cells is dependent on B cell EPO-R. Supporting the osteoclastic potential of this specific B cell subpopulation is the fact that most of the CD115+ Pro-B cells also express β3 integrin (CD61) which is essential for osteoclast differentiation and function. Using the MB1-Cre;R26R-EYFP murine model for B cell lineage tracing, we could demonstrate that some of the TRAP+/ β3 integrin+ bone lining cells were also positive for EYFP (Figure 2). This demonstrates the B cell origin of some of the osteoclasts in vivo. Conclusions: Our work highlights B cells as an important extra-erythropoietic target of EPO-EPO-R signaling that regulates bone homeostasis and might also indirectly affect EPO-stimulated erythropoietic response. The relevance and the mechanisms of the latter phenomenon merits further investigation. Importantly, we present here, for the first time, histological evidence for B cell-derived osteoclastogenesis in vivo, thus opening novel research avenues. DN and YG Equal contribution Funded by the German Israel Foundation, Grant # 01021017 to YG, DN, MR and BW and by the Israel Science Foundation (ISF) Grant No. 343/17 to DN. Disclosures Mittelman: Novartis: Honoraria, Research Funding, Speakers Bureau.


Hippocampus ◽  
2013 ◽  
Vol 23 (9) ◽  
pp. 797-811 ◽  
Author(s):  
Arnaud Tanti ◽  
Willy-Paul Westphal ◽  
Virginie Girault ◽  
Bruno Brizard ◽  
Severine Devers ◽  
...  

2018 ◽  
Vol 115 (4) ◽  
pp. E610-E619 ◽  
Author(s):  
Onur Basak ◽  
Teresa G. Krieger ◽  
Mauro J. Muraro ◽  
Kay Wiebrands ◽  
Daniel E. Stange ◽  
...  

The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13044-13044 ◽  
Author(s):  
R. D. Carvajal ◽  
A. H. Merrill ◽  
H. Dials ◽  
A. Barbi ◽  
G. K. Schwartz

13044 Background: Safingol (L-threo-dihydrosphingosine), originally identified as a competitive inhibitor of protein kinase C, has been re-identified as an inhibitor of sphingosine kinase (SK). Inhibition of SK induces apotosis and autophagy by increasing intracellular conversion of sphingosine to ceramide. In vivo, safingol enhances the antitumor activity of cisplatin in a sequence dependent manner (safingol→cisplatin). Methods: We designed a phase I trial of escalating doses of safingol (60→120→240→ 360→480→600 mg/m2) followed 1 hr later by fixed-dose cisplatin 75 mg/m2 given q21 days in pts with advanced solid tumors. Standard phase I eligibility critieria apply. Prior cisplatin is allowed. Results: 13 evaluable pts have been enrolled: 5 male/8 female, median age 54 (range 36–68), median KPS 90% (range 80–100%), mean number of priors 2.8 (range 1–6). 2 dose limiting toxicities (DLT) were observed with escalation of safingol to 240 mg/m2 (gr 3 fatigue, gr 3 hyponatremia), both felt to be due primarily to cisplatin. The protocol was amended to reduce cisplatin to 60 mg/m2, given with 240 mg/m2 of safingol. We observed 1 DLT (persistent gr 3 thrombocytopenia) at this dose level. Pharmacokinetic (PK) analysis by mass spectroscopy shows nearly complete clearance of safingol from circulation within 24 hours of treatment with a 10-fold greater amount of safingol in whole blood than in plasma. An increase in sphingosine and dihydroceramide levels were observed with therapy, and N-acyl- and N-methyl- metabolites of safingol were detected. We observed 1 PR (4+ months) in a pt with cisplatin-refractory adrenocortical cancer metastatic to the liver and lung after only 1 cycle of therapy. 1 additional pt with adrenocortical cancer has SD (2+ months) on therapy. Conclusions: Escalating doses of safingol can be safely administered with a fixed dose of cisplatin. PK data reveal acyl- and methyl-safingol for the first time in human plasma, with a significant fraction of safingol bound to human blood cells. We observed unusual activity in pts with adrenocortical cancer. Further dose escalation of safingol with cisplatin 60 mg/m2 is ongoing, and additional PK data and complete sphingolipid profiles will be presented. (Supported by NCI R21-CA112910). No significant financial relationships to disclose.


2014 ◽  
Vol 112 (3) ◽  
pp. 501-503 ◽  
Author(s):  
Koen V. Haak ◽  
Elizabeth Fast ◽  
Yihwa Baek ◽  
Juraj Mesik

There are many theories on the purpose of neural adaptation, but evidence remains elusive. Here, we discuss the recent work by Benucci et al. ( Nat Neurosci 16: 724–729, 2013), who measured for the first time the immediate effects of adaptation on the overall activity of a neuronal population. These measurements confirm two long-standing hypotheses about the purpose of adaptation, namely that adaptation counteracts biases in the statistics of the environment, and that it maintains decorrelation in neuronal stimulus selectivity.


2021 ◽  
Vol 22 (20) ◽  
pp. 10976
Author(s):  
Gerardo Bernabé Ramírez-Rodríguez ◽  
Nelly Maritza Vega-Rivera ◽  
David Meneses-San Juan ◽  
Leonardo Ortiz-López ◽  
Erika Montserrat Estrada-Camarena ◽  
...  

Depression is a neuropsychiatric disorder with a high impact on the worldwide population. To overcome depression, antidepressant drugs are the first line of treatment. However, pre-clinical studies have pointed out that antidepressants are not entirely efficacious and that the quality of the living environment after stress cessation may play a relevant role in increasing their efficacy. As it is unknown whether a short daily exposure to environmental enrichment during chronic stress and antidepressant treatment will be more effective than just the pharmacological treatment, this study analyzed the effects of fluoxetine, environmental enrichment, and their combination on depressive-associated behavior. Additionally, we investigated hippocampal neurogenesis in mice exposed to chronic mild stress. Our results indicate that fluoxetine reversed anhedonia. Besides, fluoxetine reversed the decrement of some events of the hippocampal neurogenic process caused by chronic mild stress. Conversely, short daily exposure to environmental enrichment changed the deterioration of the coat and anhedonia. Although, this environmental intervention did not produce significant changes in the neurogenic process affected by chronic mild stress, fluoxetine plus environmental enrichment showed similar effects to those caused by environmental enrichment to reverse depressive-like behaviors. Like fluoxetine, the combination reversed the declining number of Ki67, doublecortin, calretinin cells and mature newborn neurons. Finally, this study suggests that short daily exposure to environmental enrichment improves the effects of fluoxetine to reverse the deterioration of the coat and anhedonia in chronically stressed mice. In addition, the combination of fluoxetine with environmental enrichment produces more significant effects than those caused by fluoxetine alone on some events of the neurogenic process. Thus, environmental enrichment improves the benefits of pharmacological treatment by mechanisms that need to be clarified.


2019 ◽  
Author(s):  
Ira Male ◽  
A. Tuba Ozacar ◽  
Rita R. Fagan ◽  
Matthew Loring ◽  
Meng-Chieh Shen ◽  
...  

AbstractWhile neurogenesis in the adult hypothalamus is now known to be essential for proper function, the cell-cell signaling events that regulate neurogenesis in this evolutionarily conserved brain region remain poorly understood. Here we show that Hedgehog (Hh)/Gli signaling positively regulates hypothalamic neurogenesis in both larval and adult zebrafish and is necessary and sufficient for normal hypothalamic proliferation rates. Hedgehog-responsive cells are relatively rapidly proliferating pluripotent neural precursors that give rise to dopaminergic, serotonergic, and GABAergic neurons. in situ and transgenic reporter analyses revealed substantial heterogeneity in cell-cell signaling within the hypothalamic niche, with slow cycling Nestin-expressing cells residing among distinct and overlapping populations of Sonic Hh (Shh)-expressing, Hh-responsive, Notch-responsive, and Wnt-responsive radial glia. This work shows for the first time that Hh/Gli-signaling is a key component of the complex cell-cell signaling environment that regulates hypothalamic neurogenesis throughout life.


2020 ◽  
Author(s):  
Pasquale Picone ◽  
Gaetana Porcelli ◽  
Celeste Caruso Bavisotto ◽  
Domenico Nuzzo ◽  
Giacoma Galizzi ◽  
...  

Abstract Background: Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, subcellular fraction of isolated synaptic terminal that contain mitochondria, as mitochondrial delivery systems. Results: Synaptosomes preparation was validated by the presence of Synaptophysin and PSD95. Syn aptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/mL. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein-protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. Conclusions: Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, replacement of affected mitochondria with healthy ones could be a potential therapy for the treatment of neuronal mitochondrial dysfunction-related diseases.


Sign in / Sign up

Export Citation Format

Share Document