scholarly journals Methodological Investigation for Hydrogen Addition to Small Cage Carbon Fullerenes

Author(s):  
Yuri Tanuma ◽  
Toru Maekawa ◽  
Chris Ewels

Hydrogenated small fullerenes (Cn, n<60) are of interest as potential astrochemical species, and as intermediates in hydrogen catalysed fullerene growth. However computational identification of key stable species is difficult due to the vast combinatorial space of structures. In this study we explore routes to predict stable hydrogenated small fullerenes. We show that neither local fullerene geometry nor local electronic structure analysis are able to correctly predict subsequent low energy hydrogenation sites, and indeed sequential stable addition searches also sometimes fail to identify most stable hydrogenated fullerene isomers. Of the empirical and semi-empirical methods tested, GFN2-xTB consistently gives highly accurate energy correlation (r>0.99) to full DFT-LDA calculations at a fraction of the computational cost. This allows identification of the most stable hydrogenated fullerenes up to 4H for four fullerenes, namely two isomers of C28 and C40, via “brute force” systematic testing of all symmetry inequivalent combinations. The approach shows promise for wider systematic studies of smaller hydrogenated fullerenes.

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1334
Author(s):  
Yuri Tanuma ◽  
Toru Maekawa ◽  
Chris Ewels

Hydrogenated small fullerenes (Cn, n < 60) are of interest as potential astrochemical species, and as intermediates in hydrogen-catalysed fullerene growth. However, the computational identification of key stable species is difficult due to the vast configurationally space of structures. In this study, we explored routes to predict stable hydrogenated small fullerenes. We showed that neither local fullerene geometry nor local electronic structure analysis was able to correctly predict subsequent low-energy hydrogenation sites, and sequential stable addition searches also sometimes failed to identify most stable hydrogenated fullerene isomers. Of the empirical and semi-empirical methods tested, GFN2-xTB consistently gave highly accurate energy correlations (r > 0.99) to full DFT-LDA calculations at a fraction of the computational cost. This allowed identification of the most stable hydrogenated fullerenes up to 4H for four fullerenes, namely two isomers of C28 and C40, via “brute force” systematic testing of all symmetry-inequivalent combinations. The approach shows promise for wider systematic studies of smaller hydrogenated fullerenes.


Geotecnia ◽  
2015 ◽  
Vol 135 ◽  
pp. 89-113
Author(s):  
Jean Felix Cabette ◽  
◽  
<br>Heloisa Helena Silva Gonçalves ◽  
<br>Fernando Antônio Marinho ◽  
◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi Zhang ◽  
Abhishek Khetan ◽  
Süleyman Er

AbstractAlloxazines are a promising class of organic electroactive compounds for application in aqueous redox flow batteries (ARFBs), whose redox properties need to be tuned further for higher performance. High-throughput computational screening (HTCS) enables rational and time-efficient study of energy storage compounds. We compared the performance of computational chemistry methods, including the force field based molecular mechanics, semi-empirical quantum mechanics, density functional tight binding, and density functional theory, on the basis of their accuracy and computational cost in predicting the redox potentials of alloxazines. Various energy-based descriptors, including the redox reaction energies and the frontier orbital energies of the reactant and product molecules, were considered. We found that the lowest unoccupied molecular orbital (LUMO) energy of the reactant molecules is the best performing chemical descriptor for alloxazines, which is in contrast to other classes of energy storage compounds, such as quinones that we reported earlier. Notably, we present a flexible in silico approach to accelerate both the singly and the HTCS studies, therewithal considering the level of accuracy versus measured electrochemical data, which is readily applicable for the discovery of alloxazine-derived organic compounds for energy storage in ARFBs.


2019 ◽  
Vol 147 (1) ◽  
pp. 53-67 ◽  
Author(s):  
Tse-Chun Chen ◽  
Eugenia Kalnay

Proactive quality control (PQC) is a fully flow-dependent QC for observations based on the ensemble forecast sensitivity to observations technique (EFSO). It aims at reducing the forecast skill dropout events suffered in operational numerical weather prediction by rejecting observations identified as detrimental by EFSO. Past studies show that individual dropout cases from the Global Forecast System (GFS) were significantly improved by noncycling PQC. In this paper, we perform for the first time cycling PQC experiments in a controlled environment with the Lorenz model to provide a systematic testing of the new method and possibly shed light on the optimal configuration of operational implementation. We compare several configurations and PQC update methods. It is found that PQC improvement is insensitive to the suboptimal configurations in DA, including ensemble size, observing network size, model error, and the length of DA window, but the improvements increase with the flaws in observations. More importantly, we show that PQC improves the analysis and forecast even in the absence of flawed observations. The study reveals that reusing the exact same Kalman gain matrix for PQC update not only provides the best result but requires the lowest computational cost among all the tested methods.


2016 ◽  
Vol 18 (5) ◽  
pp. 4134-4143 ◽  
Author(s):  
Linyin Yan ◽  
Yan Wan ◽  
Andong Xia ◽  
Sheng Hien Lin ◽  
Ran Huang

Multi-scale theoretical model and spectra simulation for dendrimers combining TD-DFT/DFT and semi-empirical methods.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Rodrigo Cerqueira Rogerio

RESUMO: Apresenta-se neste trabalho a solução adotada para execução das fundações do Parque de Usina Eólica localizado no Ceará, com a utilização das estacas injetadas autoperfurantes, executadas em presença de solos arenosos. No qual consiste em perfurar o solo com altíssima velocidade por rotação e “pull down”, através da injeção simultânea de nata de cimento com medias pressões. Ocasionando na estaca um diâmetro final que pode obter o dobro do bit de perfuração, de acordo com o tipo de solo, gerado pelo efeito do jato da nata de cimento. Detalhando os processos executivos, verificando os aspectos técnicos e operacionais, para melhor compreender as características estruturais deste elemento. De forma a verificar “in situ” o desempenho deste novo tipo de fundação profunda, foram realizadas provas de carga, em estacas com diferentes diâmetros e comprimentos, realizadas em perfis estratigráficos de solos arenosos, para melhor avaliação de sua capacidade de carga. Analisando-se os ensaios das provas de carga interpretados a base da extrapolação da curva carga versus recalque e das previsões da capacidade de carga, obtidas por meio dos métodos semi-empíricos de correlação com ensaios de penetração (SPT), avaliando os padrões de execução desta tipologia de estaca injetada para comunidade geotécnica. ABSTRACT: This paper aims to establish the selected solution to except the foundations of the Wind Energy Park in Ceará (Brazil), with an executive methodology of the self-drilling injection piles framed in loco in Sandy soil. In which the soil drilling is done with the highest speed by rotation and pull down, through the simultaneous injection of grouting with medium pressures. This kind of drilling causes in the pile a final diameter that can get the double bore bit, according to the type of soil, done by the grouting blast. The executive processes are detailed as a whole, and also presenting the pile materials composition, in order to understand the structural characteristics of this element. To verify the performance of this new kind of deep drilling, instrumentations were done: settlement control and load tests in constructions with different structural characteristics, in self-drilling injected piles with different diameters and length, done in stratigraphical sandy, for a better evaluation of its load capacity. Analyzing the essays of load tests interpreted in the basis of curve extrapolation load versus settlement and the previsions of the load capacity, obtained by semi-empirical methods correlating with the penetrations methods (SPT), offering information to the geotechnical community.


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


Author(s):  
Musa E. Mohamed ◽  
Abdelhafeez M.A. Mohammed

Vibrational studies of amino acids experimentally and theoretically have been performed. The Semi-empirical methods optimization by PM6 and RM1 on the l- and d-amino acids (alanine, phenylalanine, aspartic and glutamic acid), showed no difference in energy between l-and d-isomers. The vibrational frequencies were calculated by semi-emprical methods (PM6 and RM1) and Ab Initio methods (B3LYP/6-31+G(d) and were scaled down by factors of 0.925 (RM1), 1.09 (PM6) and 0.89 (B3LYP/6-31+G(d)). The calculated and experimental vibrational frequencies have shown good general agreement.


2015 ◽  
Author(s):  
Joshua Counsil ◽  
Kevin McTaggart ◽  
Dominic Groulx ◽  
Kiari Boulama

A study has been undertaken to test the value of unsteady Reynolds-averaged Navier-Stokes (URANS) and traditional semi-empirical methods in the face of complex ship roll phenomena, and provide insight into the selection of bilge keel span for varying roll amplitudes. The computational fluid dynamics (CFD) code STAR-CCM+ is employed and two-dimensional submerged bodies undergoing forced roll motion are analyzed. The spatial resolution and timestepping scheme are validated by comparison with published numerical and experimental studies. The model is then applied to a fully-submerged circular cylinder with bilge keels of varying span and undergoing roll motion at varying angular amplitudes. Extracted hydrodynamic coefficients indicate that in general, increasing displacement amplitude and bilge keel span yields increased added mass and increased damping. The relationship is complex and highly dependent upon vortex interactions with each other and the body. The semi-empirical methods used for comparison yield good predictions for simple vortex interactions but fail where viscous effects are strong. Hence, URANS methods are shown to be necessary for friction-dominated flows while semi-empirical methods remain useful for initial design considerations.


Sign in / Sign up

Export Citation Format

Share Document