scholarly journals The Tyme Wear Smart Shirt is Reliable and Valid at Detecting Personalized Ventilatory Thresholds in Recreationally Active Individuals

Author(s):  
Aaron H Gouw ◽  
Gary P Van Guilder ◽  
Gillian G Cullen ◽  
Lance C. Dalleck

The aim of this study was to determine the extent to which the Tyme Wear smart shirt is as reliable and valid in detecting personalized ventilatory thresholds when compared to the Parvo Medics TrueOne 2400. In this validation study, 19 subjects were recruited to conduct two graded exercise test (GXT) trials. Each GXT trial was separated by seven to ten days of rest. During the GXT, gas exchange and heart rate data were collected by the TrueOne 2400 (TRUE) in addition to the ventilation data collected by the Tyme Wear smart shirt (S-PRED). Gas exchange data from TRUE was used to detect VT1 and VT2. TRUE and S-PRED VT1 and VT2 were compared to determine the reliability and validity of the smart shirt. Of the 19 subjects, data from 15 subjects were used during analysis. S-PRED exhibited excellent (ICC > 0.90) reliability for detection of VT1 and VT2 utilizing time point and workload and moderate (0.90 > ICC > 0.75 ) reliability utilizing heart rate. TRUE exhibited excellent reliability for detection of VT1 and VT2 utilizing time point, workload, and heart rate. When compared to TRUE, S-PRED appears to underestimate the VT1 workload (p > 0.05) across both trials and heart rate (p < 0.05) for trial 1. However, S-PRED appears to underestimate VT2 workload (p < 0.05) and heart rate (p < 0.05) across both trials. The result from this study suggests that the Tyme Wear smart shirt is less valid but is comparable in reliability when compared to the gold standard. Moreover, despite the underestimation of S-PRED VT1 and VT2, the S-PRED detected personalized ventilatory thresholds will provide an adequate training workload for most individuals. In conclusion, the Tyme Wear smart shirt provides easily accessible testing to establish threshold-guided training zones but does not devalue the long-standing laboratory equivalent.

1998 ◽  
Vol 2 ◽  
pp. 141-148
Author(s):  
J. Ulbikas ◽  
A. Čenys ◽  
D. Žemaitytė ◽  
G. Varoneckas

Variety of methods of nonlinear dynamics have been used for possibility of an analysis of time series in experimental physiology. Dynamical nature of experimental data was checked using specific methods. Statistical properties of the heart rate have been investigated. Correlation between of cardiovascular function and statistical properties of both, heart rate and stroke volume, have been analyzed. Possibility to use a data from correlations in heart rate for monitoring of cardiovascular function was discussed.


2014 ◽  
Vol 46 ◽  
pp. 72
Author(s):  
Elizabeth A. Easley ◽  
W. Scott Black ◽  
Alison L. Bailey ◽  
Terry Lennie ◽  
Kelly D. Bradley ◽  
...  

Author(s):  
Kotaro SATO ◽  
Kazunori OHNO ◽  
Ryoichiro TAMURA ◽  
Sandeep Kumar NAYAK ◽  
Shotaro KOJIMA ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Matthew Stenerson ◽  
Fraser Cameron ◽  
Darrell M. Wilson ◽  
Breanne Harris ◽  
Shelby Payne ◽  
...  

2021 ◽  
Vol 5 ◽  
pp. 205970022110448
Author(s):  
Alessandra Ventura ◽  
Fausto Romano ◽  
Mario Bizzini ◽  
Antonella Palla ◽  
Nina Feddermann

Objective Dysfunction of the autonomic cardiovascular system after a concussion is known to cause exercise intolerance due to symptoms exacerbation. The aim of this study was to compare athletes with symptoms of a sport-related concussion and healthy controls with regard to their heart rate during a graded exercise test and their heart rate recovery during the 5 min cool-down after the graded exercise test. Methods Sport-related concussion patients ( N = 61; 31% female) and controls ( N = 16; 50% female) participated in a graded exercise test on a cycle ergometer followed by 5 min active cool-down. Based on the results of graded exercise tests they were divided into four groups: (1) patients who reached the symptom threshold and had to stop the graded exercise test (symptom threshold; N = 39; 33.3% female), (2) patients with symptoms who finished the graded exercise test (S; N = 16; 25% female), (3) patients without symptoms (NS; N = 6; 33.3% female), (4) controls ( N = 16; 50% female). Main outcome measures Heart rate, severity of headache and dizziness during graded exercise test, heart rate recovery (median (heart rate recoveries/maximal heart rate) ± median absolute deviation (MAD)) 30, 60 and 300 s after the start of cool-down. Results Heart rate recovery at 30 s was significantly slower in symptom (0.95 ± 0.01) compared to all other groups ( p < 0.002; symptom threshold: 0.92 ± 0.02, NS: 0.91 ± 0.02, controls: 0.93 ± 0.02). Heart rate recovery at 60 s was significantly slower in symptom (0.90 ± 0.02) compared to the symptom threshold and controls ( p < 0.041; 0.86 ± 0.03, 0.85 ± 0.04). Heart rate recovery at 300 s was significantly slower in symptom threshold (0.72 ± 0.05) compared to controls ( p = 0.003; 0.66 ± 0.02). Conclusions Heart rate measurements in athletes with symptoms of sport-related concussion should be continued during cool-down after the graded exercise test, as dysfunction of the autonomic cardiovascular system might manifest also during cool-down.


2021 ◽  
Author(s):  
Hoi Lam Ng ◽  
Johannes Trefz ◽  
Martin Schönfelder ◽  
Henning Wackerhage

Abstract Background: Face masks are an effective, non-pharmacological strategy to reduce the transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and other pathogens. However, it is a challenge to keep masks sealed during exercise, as ventilation can increase from 5-10 L/min at rest to up to 200 L/min so that masks may be blown away from the face. To reduce leakage e.g. during exercise, a face mask was developed that is taped onto the face. The aim of this study was to investigate during a graded cycle ergometry test the effect of a taped mask on the perception of breathlessness, heart rate, lactate, and oxygen saturation when compared to a surgical mask and no mask.Methods: Four trained and healthy males and females each (n=8 in total) performed incremental cycle ergometer tests until voluntary exhaustion under three conditions: (1) No mask/control, (2) surgical mask or (3) taped mask. During these tests, we measured perception of breathlessness, heart rate, the concentration of blood lactate and peripheral oxygen saturation and analysed the resultant data with one or two-way repeated measures ANOVAs. We also used a questionnaire to evaluate mask comfort and analysed the data with paired t-tests. Results: When compared to wearing no mask, a taped face mask significantly reduces the maximal workload in a graded exercise test by 12±6% (p=0.001). Moreover, with a taped face mask, subjects perceive severe breathlessness at 12±9% lower workload (p=0.012) and oxygen saturation at 65% of the maximal workload is 1.5% lower (p=0.018) when compared to wearing no mask. Heart rate and the concentration of lactate were not significantly different at any workload. When compared to wearing a surgical mask, wearing a taped face mask has a significantly better wearing comfort (p=0.038), feels better on the skin (p=0.004), there is a lower sensation of moisture (p=0.026) and wearers perceive that less heat is generated (p=0.021). We found no sex/gender differences for any parameters. Conclusions: A taped mask is well tolerated during light and moderate exercise intensity but reduces maximal exercise capacity.


2017 ◽  
Vol 220 (10) ◽  
pp. 1875-1881 ◽  
Author(s):  
Olivia Hicks ◽  
Sarah Burthe ◽  
Francis Daunt ◽  
Adam Butler ◽  
Charles Bishop ◽  
...  

Author(s):  
Víctor Rodríguez-Rielves ◽  
Alejandro Martínez-Cava ◽  
Ángel Buendía-Romero ◽  
José Ramón Lillo-Beviá ◽  
Javier Courel-Ibáñez ◽  
...  

Purpose: To examine the reproducibility (intradevice and interdevice agreement) of the Rotor 2INpower device under a wide range of cycling conditions. Methods: Twelve highly trained male cyclists and triathletes completed 5 cycling tests, including graded exercise tests at different cadences (70–100 rpm), workloads (100–650 W), pedaling positions (seated and standing), and vibration conditions (20–40 Hz) and an 8-second maximal sprint (>1000 W). An intradevice analysis included a comparison between the power output registered by 3 units of Rotor 2INpower, whereas the power output provided by each one of these units and the gold-standard SRM crankset were compared for the interdevice analysis. Among others, statistical calculations included the standard error of measurement, expressed in absolute (in watts) and relative terms as the coefficient of variation (CV). Results: Except for the graded exercise test seated at 100 rpm/100 W (CV = 10.2%), the intradevice analysis showed an acceptable magnitude of error (CV ≤ 6.9%, standard error of measurement ≤ 12.3 W) between the 3 Rotor 2INpower. Similarly, these 3 units showed an acceptable agreement with the gold standard in all graded exercise test situations (CV ≤ 4.0%, standard error of measurement ≤ 13.1 W). On the other hand, both the intradevice and interdevice agreements proved to be slightly reduced under high cadences (intradevice: CV ≤ 10.2%; interdevice: CV ≤ 4.0%) and vibration (intradevice: CV ≤ 4.0%; interdevice: CV ≤ 3.6%), as well as during standing pedaling (intradevice: CV ≤ 4.1%; interdevice: CV ≤ 2.5%). Although within the limits of an acceptable agreement, measurement errors increased during the sprint tests (CV ≤ 7.4%). Conclusions: Based on these results, the Rotor 2INpower could be considered a reproducible tool to monitor power output in most cycling situations.


Author(s):  
Junichiro Hayano ◽  
Emi Yuda

The prediction of the menstrual cycle phase and fertility window by easily measurable bio-signals is an unmet need and such technological development will greatly contribute to women's QoL. Although many studies have reported differences in autonomic indices of heart rate variability (HRV) between follicular and luteal phases, they have not yet reached the level that can predict the menstrual cycle phases. The recent development of wearable sensors-enabled heart rate monitoring during daily life. The long-term heart rate data obtained by them carry plenty of information, and the information that can be extracted by conventional HRV analysis is only a limited part of it. This chapter introduces comprehensive analyses of long-term heart rate data that may be useful for revealing their associations with the menstrual cycle phase.


Sign in / Sign up

Export Citation Format

Share Document