scholarly journals An Innovative Test Method for Tensile Strength of Concrete by Applying the Strut-and-Tie Methodology

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2776 ◽  
Author(s):  
Wen-Cheng Liao ◽  
Po-Shao Chen ◽  
Chung-Wen Hung ◽  
Suyash Kishor Wagh

Tensile strength is one of the important mechanical properties of concrete, but it is difficult to measure accurately due to the brittle nature of concrete in tension. The three widely used test methods for measuring the tensile strength of concrete each have their shortcomings: the direct tension test equipment is not easy to set up, particularly for alignment, and there are no standard test specifications; the tensile strengths obtained from the test method of splitting tensile strength (American Society for Testing and Materials, ASTM C496) and that of flexural strength of concrete (ASTM C78) are significantly different from the actual tensile strength owing to mechanisms of methodologies and test setup. The objective of this research is to develop a new concrete tensile strength test method that is easy to conduct and the result is close to the direct tension strength. By applying the strut-and-tie concept and modifying the experimental design of the ASTM C78, a new concrete tensile strength test method is proposed. The test results show that the concrete tensile strength obtained by this proposed method is close to the value obtained from the direct tension test for concrete with compressive strengths from 25 to 55 MPa. It shows that this innovative test method, which is precise and easy to conduct, can be an effective alternative for tensile strength of concrete.

Author(s):  
Raj Dongré ◽  
Charles Antle

A statistically robust method was developed using the Weibull distribution to identify and eliminate outliers from the failure stress determinations. The method is applicable to any failure stress data set that follows the Weibull distribution; however, in this application, it was developed for the AASHTO standard test method for conducting the direct tension test (DTT). A large number of stress-at-failure measurements with the DTT were made in the course of instructing users of this device. These data, all for the same asphalt, provided the means for studying the nature of the distribution of the breaking strength of these asphalt specimens. The training database contains more than 900 data points. The current AASHTO practice of eliminating the lowest two stress values was found to be reasonable. However, it is an arbitrary method that may lead to problems in the future. On the basis of the results of this study, the procedure is recommended for use and implementation in the next AASHTO version of the DTT standard.


2019 ◽  
Author(s):  
Subandi

This is the standard method of tensile strength test for split concrete cylindrical specimens issued by the Indonesian National Standard Board (SNI) of the Indonesian National Standard (SNI) on "The tensile strength test method of cylindrical concrete specimens" is a revision of SNI 03-2491-2002, Testing methods the tensile strength of concrete. This standard is the result of identical adoption of ASTM C496 / C496M-04, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. This standard was prepared by the 91-01 Technical Committee on Building Construction Materials and Civil Engineering through the Building Materials Working Group on the 91-01-S4 Technical Sub-Committee on Building Materials, Science and Construction. The writing procedures are compiled following the BSN Guideline Number 8 of 2007 and have been discussed in a consensus meeting on June 3, 2013, in Bandung, by a Technical Sub-Committee involving speakers, experts, and related institutions.


2020 ◽  
Vol 206 ◽  
pp. 01018
Author(s):  
Rui Li ◽  
Lei Liu ◽  
Zhihua Zhang ◽  
Huaming An

Concrete is one of the most significant materials in modern society. It is widely used in many projects. Thus it is essential to study the strength and the failure patterns of this material. As well known, the compressive strength is much higher than the tensile strength for concrete. Thus, it is easy to fail due to the tensile strength for concrete. Thus, this paper focuses on the study of the tensile strength of the concrete and its failure patterns. Three types of concretes are made for studying the tensile strengths and the failure patterns of the concretes. Then the Brazilian tensile strength test method is employed in this study. The mythology of calculating tensile strength by the Brazilian tensile strength test method is introduced. Many discs are made for the tests. The Rock mechanics testing machine is used to excavate pressure on the top and bottom of the disc. It is concluded that the failure of the disc is along the vertical diameter between the top and bottom plates contacting the dis. The tensile failure is not obviously influenced by the ratios of the materials while the tensile strength is significantly influenced by the ratios of the concrete. The damage index of concrete is also proposed to describe the capabilities of resisting failure.


2020 ◽  
Vol 43 (6) ◽  
pp. 20190308
Author(s):  
Yanrong Li ◽  
Fanfan Guan ◽  
He Su ◽  
Adnan Aydin ◽  
Mary Antonette Beroya-Eitner ◽  
...  

2013 ◽  
Vol 18 (3) ◽  
pp. 107-112 ◽  
Author(s):  
Glaucio Serra Guimarães ◽  
Liliane Siqueira de Morais ◽  
Margareth Maria Gomes de Souza ◽  
Carlos Nelson Elias

INTRODUCTION: The degradation of elastic ligatures in the oral environment results in the need of periodic replacement to maintain the optimal force during the orthodontic treatment. The purpose of this study was to perform a clinical prospective randomized study of the degradation of orthodontic elastomeric ligatures in the oral environment by scanning electron microscopy (SEM) and tensile strength test. METHOD: Two hundred elastic ligatures were randomly selected and placed around the brackets of 5 volunteers and removed in groups of 10, at different times (1, 2, 3, and 4 weeks). The control group was performed by another fifty ligatures which were not submitted to the oral degradation. The analyses were done by scanning electron microscopy (SEM) and strength mechanical test. RESULTS: The tensile strength test results showed reduction in the ultimate strength values after four weeks ageing in the oral environment and no statistical difference in the yield strength values (p < 0.05). The orthodontic elastomeric ligatures surface was significantly degraded in the oral cavity after four weeks. The elastomeric degradation began in the first week when the increase in the roughness could be detected just in some areas. Afterwards, the surface became gradually rougher and, after 4 weeks, it was totally rough with some crack areas. CONCLUSIONS: The elastic ligatures aged in the oral environment showed higher superficial degradation and lower loss of mechanical properties after the maximum experimental period.


Sign in / Sign up

Export Citation Format

Share Document