scholarly journals New Insight Into the Mechanism of the Inhibition of Corrosion of Mild Steel by Some Amino Acids

Author(s):  
M I. Awad ◽  
Keyword(s):  
Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 563-574
Author(s):  
Laura K Palmer ◽  
Darren Wolfe ◽  
Jessica L Keeley ◽  
Ralph L Keil

Abstract Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leucine and tryptophan, for which our wild-type strain is auxotrophic. This suggests that availability of amino acids may play a key role in anesthetic response. Multiple lines of evidence support this proposal: (i) Deletion or overexpression of permeases that transport leucine and/or tryptophan alters anesthetic response; (ii) prototrophic strains are anesthetic resistant; (iii) altered concentrations of leucine and tryptophan in the medium affect anesthetic response; and (iv) uptake of leucine and tryptophan is inhibited during anesthetic exposure. Not all amino acids are critical for this response since we find that overexpression of the lysine permease does not affect anesthetic sensitivity. These findings are consistent with models in which anesthetics have a physiologically important effect on availability of specific amino acids by altering function of their permeases. In addition, we show that there is a relationship between nutrient availability and ubiquitin metabolism in this response.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoshinori Takano ◽  
Yoshito Chikaraishi ◽  
Hiroyuki Imachi ◽  
Yosuke Miyairi ◽  
Nanako O. Ogawa ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1167
Author(s):  
Manjinder S. Cheema ◽  
Katrina V. Good ◽  
Bohyun Kim ◽  
Heddy Soufari ◽  
Connor O’Sullivan ◽  
...  

The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription. However, its functional involvement in gene expression is controversial. Moreover, the variant in several groups of metazoan organisms consists of two main isoforms (H2A.Z-1 and H2A.Z-2) that differ in a few (3–6) amino acids. They comprise the main topic of this review, starting from the events that led to their identification, what is currently known about them, followed by further experimental, structural, and functional insight into their roles. Despite their structural differences, a direct correlation to their functional variability remains enigmatic. As all of this is being elucidated, it appears that a strong functional involvement of isoform variability may be connected to development.


Toxins ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 182 ◽  
Author(s):  
Monika Urbaniak ◽  
Łukasz Stępień ◽  
Silvio Uhlig

Beauvericin is a depsipeptide mycotoxin. The production of several beauvericin analogues has previously been shown among various genera among Hypocreales fungi. This includes so-called beauvenniatins, in which one or more N-methyl-phenylalanine residues is exchanged with other amino acids. In addition, a range of “unnatural” beauvericins has been prepared by a precursor addition to growth medium. Our aim was to get insight into the natural production of beauvericin analogues among different Hypocreales fungi, such as Fusarium and Isaria spp. In addition to beauvericin, we tentatively identified six earlier described analogues in the extracts; these were beauvericin A and/or its structural isomer beauvericin F, beauvericin C, beauvericin J, beauvericin D, and beauvenniatin A. Other analogues contained at least one additional oxygen atom. We show that the additional oxygen atom(s) were due to the presence of one to three N-methyl-tyrosine moieties in the depsipeptide molecules by using different liquid chromatography–mass spectrometry-based approaches. In addition, we also tentatively identified a beauvenniatin that contained N-methyl-leucine, which we named beauvenniatin L. This compound has not been reported before. Our data show that N-methyl-tyrosine containing beauvericins may be among the major naturally produced analogues in certain fungal strains.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Marietta John-White ◽  
James Gardiner ◽  
Priscilla Johanesen ◽  
Dena Lyras ◽  
Geoffrey Dumsday

ABSTRACT β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus. Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions. IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.


2021 ◽  
Vol 76 ◽  
pp. 41-50
Author(s):  
Yue Wang ◽  
Xin Mu ◽  
Junhua Dong ◽  
Aniefiok Joseph Umoh ◽  
Wei Ke

Amino Acids ◽  
2013 ◽  
Vol 45 (4) ◽  
pp. 755-777 ◽  
Author(s):  
Deepak Ekka ◽  
Mahendra Nath Roy

Sign in / Sign up

Export Citation Format

Share Document