Relative Magnitude of Gaussian Curvature via Self-Calibration

Author(s):  
Yi Ding ◽  
◽  
Yuji Iwahori ◽  
Takashi Nakagawa ◽  
Tsuyoshi Nakamura ◽  
...  

Gaussian curvature encodes important information about object shape. This paper presents a technique to recover the relative magnitude of Gaussian curvature from multiple images acquired under different conditions of illumination. Previous approaches make use of a separate calibration sphere. Here, we require no distinct calibration object. The novel idea is to use controlled motion of the target object itself for self-calibration. The target object is rotated in fixed steps in both the vertical and the horizontal directions. A distinguished point on the object serves as a marker. Neural network training data are obtained from the predicted geometric positions of the marker under known rotations. Four light sources with different directions are used. An RBF neural network learns the mapping of image intensities to marker position coordinates along a virtual sphere. Neural network maps four image irradiances on the target object onto a point on a virtual sphere. The area value surrounded by four mapped points onto a sphere gives an approximate value of Gaussian curvature. The modification neural network is learned for the basis function to obtain more accurate Gaussian curvature. Spatially varying albedo is allowed since the effect of albedo can be removed. It is shown that self-calibration makes it possible to recover the relative magnitude of Gaussian curvature at each point without a separate calibration object. No particular functional model of surface reflectance is assumed. Experiments with real data are demonstrated. Quantitative error analysis is provided for a synthetic example.

Author(s):  
Yi Ding ◽  
◽  
Yuji Iwahori ◽  
Tsuyoshi Nakamura ◽  
Lifeng He ◽  
...  

This paper proposes a new approach for selfcalibration and color image rendering using Radial Basis Function (RBF) neural network. Most empirical approaches make use of a calibration object. Here, we require no calibration object to both shape recovery and color image rendering. The neural network learning data are obtained through the rotations of a target object. The approach can generate realistic virtual images without any calibration object which has the same reflectance properties as the target object. The proposed approach uses a neural network to obtain both surface orientation and albedo, and applies another neural network to generate virtual images for any viewpoint and any direction of light source. Experiments with real data are demonstrated.


2020 ◽  
Vol 2020 (8) ◽  
pp. 188-1-188-7
Author(s):  
Xiaoyu Xiang ◽  
Yang Cheng ◽  
Jianhang Chen ◽  
Qian Lin ◽  
Jan Allebach

Image aesthetic assessment has always been regarded as a challenging task because of the variability of subjective preference. Besides, the assessment of a photo is also related to its style, semantic content, etc. Conventionally, the estimations of aesthetic score and style for an image are treated as separate problems. In this paper, we explore the inter-relatedness between the aesthetics and image style, and design a neural network that can jointly categorize image by styles and give an aesthetic score distribution. To this end, we propose a multi-task network (MTNet) with an aesthetic column serving as a score predictor and a style column serving as a style classifier. The angular-softmax loss is applied in training primary style classifiers to maximize the margin among classes in single-label training data; the semi-supervised method is applied to improve the network’s generalization ability iteratively. We combine the regression loss and classification loss in training aesthetic score. Experiments on the AVA dataset show the superiority of our network in both image attributes classification and aesthetic ranking tasks.


2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2461-2464 ◽  
Author(s):  
R. D. Tyagi ◽  
Y. G. Du

A steady-statemathematical model of an activated sludgeprocess with a secondary settler was developed. With a limited number of training data samples obtained from the simulation at steady state, a feedforward neural network was established which exhibits an excellent capability for the operational prediction and determination.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Michał Klimont ◽  
Mateusz Flieger ◽  
Jacek Rzeszutek ◽  
Joanna Stachera ◽  
Aleksandra Zakrzewska ◽  
...  

Hydrocephalus is a common neurological condition that can have traumatic ramifications and can be lethal without treatment. Nowadays, during therapy radiologists have to spend a vast amount of time assessing the volume of cerebrospinal fluid (CSF) by manual segmentation on Computed Tomography (CT) images. Further, some of the segmentations are prone to radiologist bias and high intraobserver variability. To improve this, researchers are exploring methods to automate the process, which would enable faster and more unbiased results. In this study, we propose the application of U-Net convolutional neural network in order to automatically segment CT brain scans for location of CSF. U-Net is a neural network that has proven to be successful for various interdisciplinary segmentation tasks. We optimised training using state of the art methods, including “1cycle” learning rate policy, transfer learning, generalized dice loss function, mixed float precision, self-attention, and data augmentation. Even though the study was performed using a limited amount of data (80 CT images), our experiment has shown near human-level performance. We managed to achieve a 0.917 mean dice score with 0.0352 standard deviation on cross validation across the training data and a 0.9506 mean dice score on a separate test set. To our knowledge, these results are better than any known method for CSF segmentation in hydrocephalic patients, and thus, it is promising for potential practical applications.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2280
Author(s):  
Ching-Chang Wong ◽  
Li-Yu Yeh ◽  
Chih-Cheng Liu ◽  
Chi-Yi Tsai ◽  
Hisasuki Aoyama

In this paper, a manipulation planning method for object re-orientation based on semantic segmentation keypoint detection is proposed for robot manipulator which is able to detect and re-orientate the randomly placed objects to a specified position and pose. There are two main parts: (1) 3D keypoint detection system; and (2) manipulation planning system for object re-orientation. In the 3D keypoint detection system, an RGB-D camera is used to obtain the information of the environment and can generate 3D keypoints of the target object as inputs to represent its corresponding position and pose. This process simplifies the 3D model representation so that the manipulation planning for object re-orientation can be executed in a category-level manner by adding various training data of the object in the training phase. In addition, 3D suction points in both the object’s current and expected poses are also generated as the inputs of the next operation stage. During the next stage, Mask Region-Convolutional Neural Network (Mask R-CNN) algorithm is used for preliminary object detection and object image. The highest confidence index image is selected as the input of the semantic segmentation system in order to classify each pixel in the picture for the corresponding pack unit of the object. In addition, after using a convolutional neural network for semantic segmentation, the Conditional Random Fields (CRFs) method is used to perform several iterations to obtain a more accurate result of object recognition. When the target object is segmented into the pack units of image process, the center position of each pack unit can be obtained. Then, a normal vector of each pack unit’s center points is generated by the depth image information and pose of the object, which can be obtained by connecting the center points of each pack unit. In the manipulation planning system for object re-orientation, the pose of the object and the normal vector of each pack unit are first converted into the working coordinate system of the robot manipulator. Then, according to the current and expected pose of the object, the spherical linear interpolation (Slerp) algorithm is used to generate a series of movements in the workspace for object re-orientation on the robot manipulator. In addition, the pose of the object is adjusted on the z-axis of the object’s geodetic coordinate system based on the image features on the surface of the object, so that the pose of the placed object can approach the desired pose. Finally, a robot manipulator and a vacuum suction cup made by the laboratory are used to verify that the proposed system can indeed complete the planned task of object re-orientation.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Gao ◽  
D Stojanovski ◽  
A Parker ◽  
P Marques ◽  
S Heitner ◽  
...  

Abstract Background Correctly identifying views acquired in a 2D echocardiographic examination is paramount to post-processing and quantification steps often performed as part of most clinical workflows. In many exams, particularly in stress echocardiography, microbubble contrast is used which greatly affects the appearance of the cardiac views. Here we present a bespoke, fully automated convolutional neural network (CNN) which identifies apical 2, 3, and 4 chamber, and short axis (SAX) views acquired with and without contrast. The CNN was tested in a completely independent, external dataset with the data acquired in a different country than that used to train the neural network. Methods Training data comprised of 2D echocardiograms was taken from 1014 subjects from a prospective multisite, multi-vendor, UK trial with the number of frames in each view greater than 17,500. Prior to view classification model training, images were processed using standard techniques to ensure homogenous and normalised image inputs to the training pipeline. A bespoke CNN was built using the minimum number of convolutional layers required with batch normalisation, and including dropout for reducing overfitting. Before processing, the data was split into 90% for model training (211,958 frames), and 10% used as a validation dataset (23,946 frames). Image frames from different subjects were separated out entirely amongst the training and validation datasets. Further, a separate trial dataset of 240 studies acquired in the USA was used as an independent test dataset (39,401 frames). Results Figure 1 shows the confusion matrices for both validation data (left) and independent test data (right), with an overall accuracy of 96% and 95% for the validation and test datasets respectively. The accuracy for the non-contrast cardiac views of &gt;99% exceeds that seen in other works. The combined datasets included images acquired across ultrasound manufacturers and models from 12 clinical sites. Conclusion We have developed a CNN capable of automatically accurately identifying all relevant cardiac views used in “real world” echo exams, including views acquired with contrast. Use of the CNN in a routine clinical workflow could improve efficiency of quantification steps performed after image acquisition. This was tested on an independent dataset acquired in a different country to that used to train the model and was found to perform similarly thus indicating the generalisability of the model. Figure 1. Confusion matrices Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Ultromics Ltd.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 830
Author(s):  
Seokho Kang

k-nearest neighbor (kNN) is a widely used learning algorithm for supervised learning tasks. In practice, the main challenge when using kNN is its high sensitivity to its hyperparameter setting, including the number of nearest neighbors k, the distance function, and the weighting function. To improve the robustness to hyperparameters, this study presents a novel kNN learning method based on a graph neural network, named kNNGNN. Given training data, the method learns a task-specific kNN rule in an end-to-end fashion by means of a graph neural network that takes the kNN graph of an instance to predict the label of the instance. The distance and weighting functions are implicitly embedded within the graph neural network. For a query instance, the prediction is obtained by performing a kNN search from the training data to create a kNN graph and passing it through the graph neural network. The effectiveness of the proposed method is demonstrated using various benchmark datasets for classification and regression tasks.


Sign in / Sign up

Export Citation Format

Share Document