scholarly journals Spatial Characteristics of Flooded Areas in the Mun and Chi River Basins in Northeastern Thailand

2019 ◽  
Vol 14 (9) ◽  
pp. 1337-1345 ◽  
Author(s):  
Shingo Zenkoji ◽  
Shigehiko Oda ◽  
Taichi Tebakari ◽  
Boonlert Archevarahuprok ◽  
◽  
...  

The objectives of this study are to conduct an analysis on rainfall change tendencies, calculate the inundation in the basins of Mun and Chi Rivers in the northeastern region of Thailand, and clarify the flood risk in the long term, taking the spatial characteristics of flooding into consideration. To grasp the rainfall change tendencies, two statistical analyses are conducted using the Mann-Kendall test and the generalized extreme value distribution. The inundation analysis is conducted using the Rainfall-Runoff-Inundation (RRI) model. As a result of the statistical analysis on the rainfall characteristics, it can be observed that the annual rainfall has significant increasing tendencies at the significance level of 5% in a wide area of the upper reaches. In addition, inundation calculation indicates that the maximum inundation depth and inundation area have increased in recent years.

MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 571-582
Author(s):  
NAVNEET KAUR ◽  
ABRAR YOUSUF ◽  
M. J. SINGH

The trend analysis of historical rainfall data on monthly, annual and seasonal basis for three locations in lower Shivaliks of Punjab, viz., Patiala-ki-Rao (1982-2015), Ballowal Saunkhri (1987-2015) and Saleran (1984-2017) has been done in the present study using linear regression model, Mann Kendall test and Sen’s slope. Further, the data for annual and seasonal rainfall and rainy days has also been analyzed on quindecennial basis, i.e., for the period of 1986-2000 and 2001-2015. The analysis of data showed that annual rainfall in the region ranged from 1000 to 1150 mm. The trend analysis of the data shows that the monthly rainfall is decreasing at Patiala-ki-Rao and Saleran, however, the trend was significant for May at Patiala-ki-Rao; and in March and November at Saleran. At Ballowal Saunkhri, the decreasing trend is observed from May to October, however, the trend is significant only in August. The decrease in annual and monsoon rainfall is about 13 to 17 mm and 12 to 13 mm per year respectively at three locations in lower Shivaliks of Punjab. The highest annual (1600-2000 mm) and monsoon (1500-1800 mm) rainfall during the entire study period was recorded in the year 1988 at three locations. The decadal analysis of the data shows below normal rainfall during April to October. The analysis of the rainfall and rainy days on monthly, annual and seasonal averages of 15 year basis showed that both rainfall and rainy days have decreased during the 2001-2015 as compared to 1986-2000 during all the seasons of the year.


Author(s):  
Majid Mathlouthi ◽  
Fethi Lebdi

Abstract. Modeling of extremes dry spells in Northern Tunisia, in order to detect the severity of the phenomenon, is carried out. Dry events are considered as a sequence of dry days (below a threshold) separated by rainfall events from each other. The maximum dry event duration follows the Generalized Extreme Value distribution. The data series adherence to the probability distribution was verified by the Anderson-Darling test. The positive trend and non-stationarity of dry spells was verified respectively by the Mann–Kendall test and Dickey–Fuller and augmented Dickey–Fuller tests. The irregular distribution of rainfall in the growing season for Sidi Abdelbasset station has increased the number of dry spells. The increase of rainy days in Ghézala dam and Sidi Salem gauge stations resulted in a decrease of dry spells in this area. Regarding the return period of one year (wet season), dry events occurred from 14 to 27 d in this region constitute an agricultural potential risk. The Southern region was the most vulnerable.


MAUSAM ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 439-450
Author(s):  
SURINDER KAUR ◽  
SUMANT KUMAR DIWAKAR ◽  
ASHOK KUMAR DAS

In this paper the long term trend of annual and seasonal rainfall over different districts, Meteorological (Met.) sub-divisions and whole India have been studied using the long term rainfall data for the period from 1901 to 2013. The changes in amount and pattern of rainfall have a significant impact on agriculture, water resources management and overall economy of the country. Mann-Kendall test is applied to check the significance of the trend. Linear Regression and Theil-Sen’s non parametric test has been applied to estimate the trend. The study is carried out for 632 districts and 34 sub divisions of India by utilizing the gridded rainfall data (0.25° × 0.25°) over the main land except Andaman & Nicobar and Lakshadweep islands. Many authors have studied that extreme events are increasing but there is no trend in Pan India’s rainfall. It is observed from the annual rainfall analysis 10% of the number of districts are showing significant increasing trend and 13% significant decreasing (mainly in Uttar Pradesh) trend whereas irrespective of high and low rainfall regions, 10% area of the country is showing significant increasing trend and 8% of the area of the country showing significant decreasing trend in annual rainfall. In Meteorological Sub divisions, east & west UP are showing significant negative trend and some of the coastal sub divisions are showing positive trend. It is also observed that the country’s rainfall is not showing any trend.


Author(s):  
Jéssica Assaid Martins Rodrigues ◽  
Marcelo Ribeiro Viola ◽  
Carlos Rogério de Mello ◽  
Marco Antônio Vieira Morais

The Brazilian Cerrado biome is the largest and richest tropical savanna in the world and is among the 25 biodiversity hotspots identified worldwide. However, the lack of adequate hydrological monitoring in this region has led to problems in the management of water resources. In order to provide tools for the adequate management of water resources in the Brazilian Cerrado biome region, this paper develops the regionalization of maximum, mean and minimum streamflows in the Tocantins River Basin (287,405.5 km2), fully located in the Brazilian Cerrado biome. The streamflow records of 32 gauging stations in the Tocantins River Basin are examined using the Mann-Kendall test and the hydrological homogeneity non-parametric index-flood method. One homogeneous region was identified for the estimate of the streamflows Qltm (long-term mean streamflow), Q90% (streamflow with 90% of exceeding time), Q95% (streamflow with 95% of exceeding time) and Q7,10 (minimum annual streamflow over 7 days and return period of 10 years). Two homogeneous regions were identified for maximum annual streamflow estimation and the Generalized Extreme Value distribution is found to describe the distribution of maximus events appropriately within the both regions. Regional models were developed for each streamflow of each region and evaluated by cross-validation. These models can be used for the estimation of maximum, mean and minimum streamflows in ungauged basins within the Tocantins River Basin within the area boundaries identified. Therefore, the results provided in this paper are valuable tools for practicing water-resource managers in the Brazilian Cerrado biome. Keywords: l-moments, statistical hydrology, water use rights concessions.


2021 ◽  
Vol 5 (2) ◽  
pp. 137-142
Author(s):  
Shoukat Ali Shah ◽  
Madeeha Kiran

Temperature and precipitation variations have huge environmental, socio-economic impacts. This study aims to detect the trend of temperature, precipitation, and discharge from 2000-2020 in the district Ghotki. Mann Kendal test and Sen’s slope were applied by using XLSTAT in MS Excel to investigate the significance of all trends. The results showed that the annual rainfall trend was increased with the highest intensity noted in 2003; 275mm and 2010; 271 mm. The trend in the monsoon season was increased with the highest slope 0.863 by comparing with non-monsoon which showed the slope was 0.642. The annual temperature was increased an average temperature recorded in 2016; 28.5 & 2018; 28 °C. Further, the summer-autumn season’s trend has sharply increased. While the trend of Ghotki feeder discharge was slightly increased in January due to the continuous flow of water and less demand for water during the Rabi season. But in July, the highest discharge was recorded in 2010 due to heavy rainfall and flood situations over the study area. The trend in Kharif was continuously declined due to farmers started sowing sugarcane crops instead of rice and cotton which need less irrigation water. It is concluded that the performance of MK and SS tests was consistent at the verified significance level.


2013 ◽  
Vol 1 (6) ◽  
pp. 7059-7092 ◽  
Author(s):  
S. P. Wang ◽  
F. Q. Jiang ◽  
R. J. Hu ◽  
Y. W. Zhang

Abstract. Plentiful snowfall is an important resource in northern Xinjiang. However, extreme snowfall events can lead to destructive avalanches, traffic interruptions or even the collapse of buildings. The daily winter precipitation data from 18 stations in northern Xinjiang during 1959/1960–2008/2009 were selected for purpose of analyzing long-term variability of extreme snowfall events. Five extreme snowfall indices, Maximum 1 day snowfall amount (SX1day), Maximum 1-weather process snowfall amount (SX1process), Blizzard days (DSb), Consecutive snow days (DSc) and Blizzard weather processes (PSb), were defined and utilized to quantitatively describe the intensity and frequency of extreme snowfall events. Temporal trends of the five indices were analyzed by Mann–Kendall test and simple linear regression, and their trends were interpolated using universal kriging interpolation. Temporally, we found that most stations have upward trends in the five indices of extreme snowfall events, and over entire northern Xinjiang, they were all increasing at the 0.01 significance level (MK test), with the linear tendency rates of 0.49 mm (10 a)−1 (SX1day), 0.89 mm (10 a)−1 (SX1process), 0.024 days (10 a)−1 (DSb), 0.14 days (10 a)−1 (DSc), and 0.069 times (10 a)−1 (PSb) respectively. Meanwhile, obvious decadal fluctuations besides long-term increasing trends are identified. Trends in the intensity and frequency of extreme snowfall events show a~distinct difference spatially. In general, trends of five indices were found shifting from decreasing to increasing from the northeast to the southwest and from the north to the south of northern Xinjiang. Furthermore, the regions covered by increasing or decreasing extreme snowfall events were identified, implying the hot or cold spots for extreme snowfall events changes. These results may be helpful for northern Xinjiang on the regional and local resource and emergency planning.


Author(s):  
Marlus Sabino ◽  
Adilson Pacheco de Souza ◽  
Eduardo Morgan Uliana ◽  
Luana Lisboa ◽  
Frederico Terra de Almeida ◽  
...  

 Intensive rainfall is an important meteorological variable that is of technical interest in hydraulic projects. This study therefore generated Intensity-Duration-Frequency equations (IDF) for 14 weather stations in Mato Grosso State, based on pluviograph analysis. Annual maximum rainfall data regarding 10-to-1440-minute long rainfall events were collected from digitized daily pluviographs. Data adherence to the generalized extreme value distribution (GEV) was checked through the Kolmogorov-Smirnov test at a 20% significance level. Next, the maximum probable rainfall for return periods such as 2, 5, 10, 20, 30, 50 and 100 years was calculated and the IDF equations were adjusted. The performance of the IDF equations was evaluated based on mean absolute error (MAE), root mean square error (RMSE), bias, Willmott's concordance index and Nash-Sutcliffe efficiency index (ENS). Adjusting the IDF equations was only possible for rainfall durations ranging from 10 to 360 min at each station due to the low frequency of longer rainfalls.  High variation was present in parameters of the IDF equation and in maximum rainfall intensity between stations. The satisfactory performance of the models, as attested to by statistical indices, allows using IDF equations adjusted for rainfall durations from 10 to 360 min, and return periods from 2 to 100 years, in the regions of the Mato Grosso weather stations.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 896
Author(s):  
Thanh Thu Nguyen ◽  
Makoto Nakatsugawa ◽  
Tomohito J. Yamada ◽  
Tsuyoshi Hoshino

This study aims to evaluate the change in flood inundation in the Chitose River basin (CRB), a tributary of the Ishikari River, considering the extreme rainfall impacts and topographic vulnerability. The changing impacts were assessed using a large-ensemble rainfall dataset with a high resolution of 5 km (d4PDF) as input data for the rainfall–runoff–inundation (RRI) model. Additionally, the prediction of time differences between the peak discharge in the Chitose River and peak water levels at the confluence point intersecting the Ishikari River were improved compared to the previous study. Results indicate that due to climatic changes, extreme river floods are expected to increase by 21–24% in the Ishikari River basin (IRB), while flood inundation is expected to be severe and higher in the CRB, with increases of 24.5, 46.5, and 13.8% for the inundation area, inundation volume, and peak inundation depth, respectively. Flood inundation is likely to occur in the CRB downstream area with a frequency of 90–100%. Additionally, the inundation duration is expected to increase by 5–10 h here. Moreover, the short time difference (0–10 h) is predicted to increase significantly in the CRB. This study provides useful information for policymakers to mitigate flood damage in vulnerable areas.


2020 ◽  
Vol 18 (1) ◽  
pp. 89-96
Author(s):  
Ahmad Nur Akma Juangga Fura ◽  
Retno Utami Agung Wiyono ◽  
Indarto Indarto

Madura subject to a high level of flood hazard. One of the main causes of flood is extreme rainfall. Global warming generates changes in the amount of extreme rainfall. This research is conducted to identify and to analyze the trends, changes, and randomness of 24-hour extreme rainfall data on Madura Island. The method used is a non-parametric method which includes the Median Crossing test, the Mann-Kendall test, and the Rank-Sum test at the significance level of α =0.05. The analysis was carried out on 31 rain gauge stations. The recording period observed is between 1991-2015. The results of the analysis show that based on the Median Crossing test, most rainfall stations have data originating from random processes. The result shows also that the maximum 24-hour extreme rainfall trend is significantly decreased in a few locations, while for the majority of other stations have no experience a significant trend.


Sign in / Sign up

Export Citation Format

Share Document