Landing Motion of a Legged Robot with Minimization of Impact Force and Joint Torque

2015 ◽  
Vol 27 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Xianglong Wan ◽  
◽  
Takateru Urakubo ◽  
Yukio Tada

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00270001/04.jpg"" width=""300"" />Optimal motion of a legged robot</div> This paper deals with an optimal landing motion of a four-link legged robot that minimizes the impact force at the contact point and the joint torques necessary during the motion. The cost function for optimization is given as the weighted sum of the impact force and the joint torques. The configuration of the robot that is close to a singular configuration is advantageous in minimizing the joint torques for a heavy torso, while the configuration where the leg is bent is advantageous in reducing the impact force. This is shown by numerical optimization results with different weights for the cost function and a theoretical analysis of a simplified model of the robot. </span>

2007 ◽  
Vol 12 (1) ◽  
pp. 91-104 ◽  
Author(s):  
MYUNGHUN LEE

Environmental conservation requires society to consider the trade-off between allocating resources to productive activities and pollution control activities. Therefore, it is informative to measure the effect of environmental regulations on firms' productivity. This paper attempts to estimate the impact of environmental regulations on Korean manufacturing industries. Despite being key inputs in the manufacturing process, raw materials have often been excluded from the cost function due to the lack of price data. A restricted cost function is used to improve the reliability of parameter estimates. Empirical results indicate that environmental regulations caused a 12 percent decline in the average annual rate of productivity growth over the period 1982–93.


2015 ◽  
Vol 766-767 ◽  
pp. 499-504 ◽  
Author(s):  
M. Anish ◽  
R. Thamaraikannan ◽  
B. Kanimozhi ◽  
Ham G. Varghese ◽  
Shem G. Varghese

Improvement of bumper system is crucial in the automotive industry. The main objectives are to increase the performance of the bumper and also to find a solution to reduce the cost of the bumper thereby facilitating the reduction of production cost. The cost of bumper is high owing to the amount of material used and various processes involved .The new design considers on reducing the amount of material use and adding improved hydraulics instead of normal bumper to give cushioning effect and also assures safety in low speed collision. The new design also improves the ability to absorb more impact load and increase the protection of the front car component. The methodology employed was the study of the front bumper system, design and fabrication. The suitable material that can be used as the bumper in terms of economical but still maintaining the toughness is Plastic-Polycarbonate (Molded) which is not expensive compared to the best material from the analysis of E-Glass Fiber, Plastic-Nylon Type 6/6 and Plastic ABS (Molded). The suitable material to be used for making beam is AISI E52100 Steel. Rearrangement of the mounting positions gives a different effect on the ability to withstand the impact force.


2014 ◽  
Vol 142 (11) ◽  
pp. 3998-4016 ◽  
Author(s):  
Dominik Jacques ◽  
Isztar Zawadzki

Abstract In radar data assimilation, statistically optimal analyses are sought by minimizing a cost function in which the variance and covariance of background and observation errors are correctly represented. Radar observations are particular in that they are often available at spatial resolution comparable to that of background estimates. Because of computational constraints and lack of information, it is impossible to perfectly represent the correlation of errors. In this study, the authors characterize the impact of such misrepresentations in an idealized framework where the spatial correlations of background and observation errors are each described by a homogeneous and isotropic exponential decay. Analyses obtained with perfect representation of correlations are compared to others obtained by neglecting correlations altogether. These two sets of analyses are examined from a theoretical and an experimental perspective. The authors show that if the spatial correlations of background and observation errors are similar, then neglecting the correlation of errors has a small impact on the quality of analyses. They suggest that the sampling noise, related to the precision with which analysis errors may be estimated, could be used as a criterion for determining when the correlations of errors may be omitted. Neglecting correlations altogether also yields better analyses than representing correlations for only one term in the cost function or through the use of data thinning. These results suggest that the computational costs of data assimilation could be reduced by neglecting the correlations of errors in areas where dense radar observations are available.


Author(s):  
Martijn H. H. Schoot Uiterkamp ◽  
Marco E. T. Gerards ◽  
Johann L. Hurink

In the resource allocation problem (RAP), the goal is to divide a given amount of a resource over a set of activities while minimizing the cost of this allocation and possibly satisfying constraints on allocations to subsets of the activities. Most solution approaches for the RAP and its extensions allow each activity to have its own cost function. However, in many applications, often the structure of the objective function is the same for each activity, and the difference between the cost functions lies in different parameter choices, such as, for example, the multiplicative factors. In this article, we introduce a new class of objective functions that captures a significant number of the objectives occurring in studied applications. These objectives are characterized by a shared structure of the cost function depending on two input parameters. We show that, given the two input parameters, there exists a solution to the RAP that is optimal for any choice of the shared structure. As a consequence, this problem reduces to the quadratic RAP, making available the vast amount of solution approaches and algorithms for the latter problem. We show the impact of our reduction result on several applications, and in particular, we improve the best-known worst-case complexity bound of two problems in vessel routing and processor scheduling from [Formula: see text] to [Formula: see text]. Summary of Contribution: The resource allocation problem (RAP) with submodular constraints and its special cases are classic problems in operations research. Because these problems are studied in many different scientific disciplines, many conceptual insights, structural properties, and solution approaches have been reinvented and rediscovered many times. The goal of this article is to reduce the amount of future reinventions and rediscoveries by bringing together these different perspectives on RAPs in a way that is accessible to researchers with different backgrounds. The article serves as an exposition on RAPs and on their wide applicability in many areas, including telecommunications, energy, and logistics. In particular, we provide tools and examples that can be used to formulate and solve problems in these areas as RAPs. To accomplish this, we make three concrete contributions. First, we provide a survey on algorithms and complexity results for RAPs and discuss several recent advances in these areas. Second, we show that many objectives for RAPs can be reduced to a (simpler) quadratic objective function, which makes available the extensive collection of fast and efficient algorithms for quadratic RAPs to solve these problems. Third, we discuss the impact that RAPs and the aforementioned reduction result can make in several application areas.


2020 ◽  
Vol 10 (24) ◽  
pp. 8798
Author(s):  
Yujiang Xiang ◽  
Shadman Tahmid ◽  
Paul Owens ◽  
James Yang

Box delivery is a complicated manual material handling task which needs to consider the box weight, delivering speed, stability, and location. This paper presents a subtask-based inverse dynamic optimization formulation for determining the two-dimensional (2D) symmetric optimal box delivery motion. For the subtask-based formulation, the delivery task is divided into five subtasks: lifting, the first transition step, carrying, the second transition step, and unloading. To render a complete delivering task, each subtask is formulated as a separate optimization problem with appropriate boundary conditions. For carrying and lifting subtasks, the cost function is the sum of joint torque squared. In contrast, for transition subtasks, the cost function is the combination of joint discomfort and joint torque squared. Joint angle profiles are validated through experimental results using Pearson’s correlation coefficient (r) and root-mean-square-error (RMSE). Results show that the subtask-based approach is computationally efficient for complex box delivery motion simulation. This research outcome provides a practical guidance to prevent injury risks in joint torque space for workers who deliver heavy objects in their daily jobs.


2015 ◽  
Vol 15 (17) ◽  
pp. 10019-10031 ◽  
Author(s):  
S. Lim ◽  
S. K. Park ◽  
M. Zupanski

Abstract. Ozone (O3) plays an important role in chemical reactions and is usually incorporated in chemical data assimilation (DA). In tropical cyclones (TCs), O3 usually shows a lower concentration inside the eyewall and an elevated concentration around the eye, impacting meteorological as well as chemical variables. To identify the impact of O3 observations on TC structure, including meteorological and chemical information, we developed a coupled meteorology–chemistry DA system by employing the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and an ensemble-based DA algorithm – the maximum likelihood ensemble filter (MLEF). For a TC case that occurred over East Asia, Typhoon Nabi (2005), our results indicate that the ensemble forecast is reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of O3 observations impacts meteorological and chemical variables near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical variables adjustment was at higher levels. The impact on meteorological variables was similar in both over China and near the TC. The analysis results are verified using several measures that include the cost function, root mean square (RMS) error with respect to observations, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on the analysis – the cost function and RMS error have decreased by 16.9 and 8.87 %, respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker maximum over northeastern China.


2021 ◽  
Author(s):  
Germain Faity ◽  
Denis Mottet ◽  
Simon Pla ◽  
Jérôme Froger

AbstractHumans coordinate biomechanical degrees of freedom to perform tasks at minimum cost. When reaching a target from a seated position, the trunk-arm-forearm coordination moves the hand to the well-defined spatial goal, while typically minimising hand jerk and trunk motion. However, due to fatigue or stroke, people visibly move the trunk more, and it is unclear what cost can account for this. Here we show that people recruit their trunk when the torque at the shoulder is too close to the maximum. We asked 26 healthy participants to reach a target while seated and we found that the trunk contribution to hand displacement increases from 11% to 27% when an additional load is handled. By flexing and rotating the trunk, participants spontaneously increase the reserve of anti-gravitational torque at the shoulder from 25% to 40% of maximal voluntary torque. Our findings provide hints on how to include the reserve of torque in the cost function of optimal control models of human coordination in healthy fatigued persons or in stroke victims.


2015 ◽  
Vol 15 (8) ◽  
pp. 11573-11597
Author(s):  
S. Lim ◽  
S. K. Park ◽  
M. Zupanski

Abstract. Since the air quality forecast is related to both chemistry and meteorology, the coupled atmosphere–chemistry data assimilation (DA) system is essential to air quality forecasting. Ozone (O3) plays an important role in chemical reactions and is usually assimilated in chemical DA. In tropical cyclones (TCs), O3 usually shows a lower concentration inside the eyewall and an elevated concentration around the eye, impacting atmospheric as well as chemical variables. To identify the impact of O3 observations on TC structure, including atmospheric and chemical information, we employed the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) with an ensemble-based DA algorithm – the maximum likelihood ensemble filter (MLEF). For a TC case that occurred over the East Asia, our results indicate that the ensemble forecast is reasonable, accompanied with larger background state uncertainty over the TC, and also over eastern China. Similarly, the assimilation of O3 observations impacts atmospheric and chemical variables near the TC and over eastern China. The strongest impact on air quality in the lower troposphere was over China, likely due to the pollution advection. In the vicinity of the TC, however, the strongest impact on chemical variables adjustment was at higher levels. The impact on atmospheric variables was similar in both over China and near the TC. The analysis results are validated using several measures that include the cost function, root-mean-squared error with respect to observations, and degrees of freedom for signal (DFS). All measures indicate a positive impact of DA on the analysis – the cost function and root mean square error have decreased by 16.9 and 8.87%, respectively. In particular, the DFS indicates a strong positive impact of observations in the TC area, with a weaker maximum over northeast China.


Sign in / Sign up

Export Citation Format

Share Document