TasKi: Overhead Work Assistance Device with Passive Gravity Compensation Mechanism

2020 ◽  
Vol 32 (1) ◽  
pp. 138-148
Author(s):  
Yasuyuki Yamada ◽  
Hirokazu Arakawa ◽  
Taro Watanabe ◽  
Shunya Fukuyama ◽  
Rie Nishihama ◽  
...  

During overhead work, workers need to keep raising weights of approximately 2 to 4 kg with the muscular strength of their upper limbs, and the burden of this work is high. Therefore, we developed an assistive device, named TasKi, using a self-weighted compensation mechanism to reduce the burden on upper limbs during overhead work. It can compensate for upper limb weight using the force of a spring in various postures of the upper limbs, without a battery. In this study, to provide effective assistance to many users, we clarified the crucial assistance and parameter adjustment range of settings corresponding to physical differences. First, the assistive force value of TasKi to reduce the work burden of each user was confirmed via a subjective evaluation experiment and myoelectric potential measurements. Next, we conducted a test survey of TasKi users and investigated the relationship between physique and the wearing feeling. According to the survey, 80% of the subjects provided favorable opinions on the assistive method used by TasKi. Finally, we had subjects of various physiques wear the device and investigated the relationship between physique and the wearing feeling with respect to shoulder joint movements. It was observed that the subjects with greater shoulder widths experienced difficulties when moving in the direction of internal-external rotation because of the small size of TasKi. The influence on the ease of motion and perception of size was less in the direction of flexion-extension and adduction-abduction motions.

2017 ◽  
Vol 31 (01) ◽  
pp. 068-074
Author(s):  
Swithin Razu ◽  
Keiichi Kuroki ◽  
James Cook ◽  
Trent Guess

AbstractThe function and importance of the anterior intermeniscal ligament (AIML) of the knee are not fully known. The purpose of this study was to evaluate the biomechanical and sensorimotor function of the AIML. Computational analysis was used to assess AIML and tibiomeniscofemoral biomechanics under combined translational and rotational loading applied during dynamic knee flexion–extension. Histologic and immunohistochemical examination was used to identify and characterize neural elements in the tissue. The computational models were created from anatomy and passive motion of two female subjects and histologic examinations were conducted on AIMLs retrieved from 10 fresh-frozen cadaveric knees. It was found that AIML strain increased with compressive knee loading and that external rotation of the tibia unloads the AIML, suppressing the relationship between AIML strain and compressive knee loads. Extensive neural elements were located throughout the AIML tissue and these elements were distributed across the three AIML anatomical types. The AIMLs have a beneficial influence on knee biomechanics with decreased meniscal load sharing with AIML loss. The AIML plays a significant biomechanical and neurologic role in the sensorimotor functions of the knee. The major role for the AIML may primarily involve its neurologic function.


2016 ◽  
Vol 29 (06) ◽  
pp. 484-490 ◽  
Author(s):  
Rebecca Howie ◽  
Timothy Foutz ◽  
Curtis Cathcart ◽  
Jeff Burmeister ◽  
Steve Budsberg

SummaryObjective: To investigate the relationship between tibiofemoral kinematics before and after total knee replacement (TKR) in vitro.Animals: Eight canine hemipelves.Methods: A modified Oxford Knee Rig was used to place cadaveric limbs through a range of passive motion allowing the kinematics of the stifle to be evaluated. Four measurements were performed: a control stage, followed by a cranial cruciate transection stage, then following TKR with the musculature intact stage, and finally TKR with removal of limb musculature stage. Joint angles and translations of the femur relative to the tibia, including flexion-extension versus adduction-abduction, flexion-extension versus internal-external rotation, as well as flexion-extension versus each translation (cranial-caudal and lateral-medial) were calculated.Results: Significant differences were identified in kinematic data from limbs following TKR implantation as compared to the unaltered stifle. The TKR resulted in significant decreases in external rotation of the stifle during flexion-extension compared to the limb prior to any intervention, as well as increasing the abduction. The TKR significantly increased the caudal translation of the femur relative to the tibia compared to the unaltered limb. When compared with the cranial cruciate ligament-transection stage, TKR significantly decreased the ratio of the external rotation to flexion.Discussion: All three test periods showed significant differences from the unaltered stifle. The TKR did not completely restore the normal kinematics of the stifle.


2016 ◽  
Vol 53 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Ernest Baiget ◽  
Francisco Corbi ◽  
Juan Pedro Fuentes ◽  
Jaime Fernández-Fernández

AbstractThe aims of this study were to analyze the relationship between maximum isometric strength levels in different upper and lower limb joints and serve velocity in competitive tennis players as well as to develop a prediction model based on this information. Twelve male competitive tennis players (mean ± SD; age: 17.2 ± 1.0 years; body height: 180.1 ± 6.2 cm; body mass: 71.9 ± 5.6 kg) were tested using maximum isometric strength levels (i.e., wrist, elbow and shoulder flexion and extension; leg and back extension; shoulder external and internal rotation). Serve velocity was measured using a radar gun. Results showed a strong positive relationship between serve velocity and shoulder internal rotation (r = 0.67; p < 0.05). Low to moderate correlations were also found between serve velocity and wrist, elbow and shoulder flexion – extension, leg and back extension and shoulder external rotation (r = 0.36 – 0.53; p = 0.377 – 0.054). Bivariate and multivariate models for predicting serve velocity were developed, with shoulder flexion and internal rotation explaining 55% of the variance in serve velocity (r = 0.74; p < 0.001). The maximum isometric strength level in shoulder internal rotation was strongly related to serve velocity, and a large part of the variability in serve velocity was explained by the maximum isometric strength levels in shoulder internal rotation and shoulder flexion.


Author(s):  
Aleksandra Rakhmanova ◽  
Georgiy Loginov ◽  
Vladimir Dolich ◽  
Nataliya Komleva ◽  
Galina Rakhmanova

The relevance of the article is determined by the existence of contradictions between the need to introduce innovative technologies into the educational process at school, as an integral attribute of modern education, and the negative influence of factors on the physical and psycho-emotional state of health of students related to the use of information and communication tools (computers, phones, headphones). The goal of the study was to assess the relationship between the timing of the use of information and communication tools and the frequency of functional and psycho-emotional complaints in groups of middle and high school schoolchildren. 400 schoolchildren of the Saratov Region, the Moscow Region, Leningrad Region and the Republic of Dagestan were surveyed, who made up two groups of research: middle-school schoolchildren (grades 5–6) and high-school schoolchildren (grades 10–11 The survey was carried out by means of the standardized formalized cards which included the questions considering usage time of computers and mobile phones, complaints to a headache, hands pain, other pain and/or feeling of discomfort from visual organ and the organs of hearing, as well as a psycho-emotional state. Statistical analysis of the data was performed using the STATISTICA application software program by StatSoft Inc (USA). To compare the frequencies of a binary feature, a fourfold table of absolute frequencies was constructed and the level of statistical significance for the exact Fisher’s two-tailed test criterion was determined. The study was conducted according to the requirements of bioethics, after signing informed consent statement by teenagers and their parents. The study examined the relationship between the timing of the use of information and communication tools and the frequency of complaints in groups of schoolchildren. The results of the study should be taken into account when developing and implementing preventive measures to prevent negative effects of computers and mobile devices on the body of students.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 759
Author(s):  
Byung Gon Kim ◽  
Seung Kil Lim ◽  
Sunga Kong

This study aims to assess the relationship between scapular upward rotation (SUR) across varying humeral-elevation angles (HEAs) and shoulder isokinetic strength and ratio in professional baseball pitchers. The subjects were professional baseball pitchers (n = 16) without a history of shoulder injury in the last six months. The subject’s SUR angles were measured with the humerus elevated at HEAs of 0° (at rest), 60°, 90°, and 120° to the scapular plane. Shoulder isokinetic strength was evaluated for shoulder internal rotation (IR) and external rotation (ER) strength (PT%BW and TW%BW), and the ER/IR strength ratios were determined at 60, 120 and 180°/s using an isokinetic dynamometer. The SUR angle at an HEA of 0° was positively correlated with IR strength at 120°/s (r = 0.535) and 180°/s (r = 0.522). The SUR angle at an HEA of 60° was negatively correlated with the ER/IR strength ratios at 60°/s (r = −0.505) and 120°/s (r = −0.500). The SUR angle at an HEA of 90° was negatively correlated with the ER/IR strength ratios at 60°/s (r = −0.574; r = −0.554) and 120°/s (r = −0.521; r = −0.589) as well as with ER strength at 180°/s (r = −0.591, r = −0.556). The SUR angle at an HEA of 120° was negatively correlated with ER strength at 60°/s (r = −0.558), 120°/s (r = −0.504; r = −0.524), and 180°/s (r = −0.543) and the ER/IR strength ratio at 60°/s (r = −0.517). In this study, we found that the ratio of isokinetic strength between ER and IR became closer to the normal range on increasing the SUR angle. In particular, an HEA of 90°, which resembles the pitching motion, showed a clear relationship between SUR, shoulder ER, and the ratio of ER/IR isokinetic strength in professional baseball pitchers.


2021 ◽  
Vol 11 (8) ◽  
pp. 3391
Author(s):  
Jan Marušič ◽  
Goran Marković ◽  
Nejc Šarabon

The purpose of this study was to evaluate intra- and inter-session reliability of the new, portable, and externally fixated dynamometer called MuscleBoard® for assessing the strength of hip and lower limb muscles. Hip abduction, adduction, flexion, extension, internal and external rotation, knee extension, ankle plantarflexion, and Nordic hamstring exercise strength were measured in three sessions (three sets of three repetitions for each test) on 24 healthy and recreationally active participants. Average and maximal value of normalized peak torque (Nm/kg) from three repetitions in each set and agonist:antagonist ratios (%) were statistically analyzed; the coefficient of variation and intra-class correlation coefficient (ICC2,k) were calculated to assess absolute and relative reliability, respectively. Overall, the results display high to excellent intra- and inter-session reliability with low to acceptable within-individual variation for average and maximal peak torques in all bilateral strength tests, while the reliability of unilateral strength tests was moderate to good. Our findings indicate that using the MuscleBoard® dynamometer can be a reliable device for assessing and monitoring bilateral and certain unilateral hip and lower limb muscle strength, while some unilateral strength tests require some refinement and more extensive familiarization.


2021 ◽  
pp. 1-6
Author(s):  
Young Jin Jo ◽  
Young Kyun Kim

BACKGROUND: Dynamic knee valgus (DKV) is a known risk factor for acute and chronic knee injuries and is more frequently diagnosed in females. A real-time single-leg squat test (SLST) could screen for DKV to prevent injuries. OBJECTIVE: To compare the differences in lower extremity strength and range of motion (ROM) in female soccer athletes with and without DKV during an SLST. METHODS: Eighteen subjects with DKV (DKV group) and 18 subjects without DKV (control group) during a single-leg squat were included. Hip strength (flexion, extension, abduction, adduction, internal rotation, and external rotation) was measured with a hand-held dynamometer. Hip ROM (internal and external rotation), and ankle ROM (dorsiflexion with the knee flexed and extended) were measured. Independent t-test was used to compare the averages of the groups. RESULTS: There were significant differences in hip abduction to adduction strength ratio (DKV: 1.48 ± 0.3, control: 1.22 ± 0.26, p< 0.01) and ankle dorsiflexion with knee flexed (DKV: 17.22 ± 6.82, control: 21.22 ± 4.55, p< 0.05) and extended (DKV: 10.14 ± 4.23, control: 14.75 ± 3.40, p< 0.001) between the groups. CONCLUSION: The hip abduction to adduction strength ratio and gastrocnemius and soleus flexibility may be associated factors in dynamic knee valgus and therefore should be assessed and treated, if indicated, as a possible preventive measure in female athletes with this variation.


Sign in / Sign up

Export Citation Format

Share Document