scholarly journals Analysis of SCERP: A Cluster Based Routing Protocol for Energy Balancing in Wireless Sensor Network

Author(s):  
M.A. Pund ◽  
Shital Bahale ◽  
Jaya Ingole

Prolonging lifetime of wireless sensor network is a most significant problem due to energy constraint nature of sensor nodes. It is difficult to recharge nodes during network lifetime, to increase application area of WSN there is a need to design energy efficient clustering protocol for WSN. In this article there is a discussion about problems in Leach protocol and propose an improvement on the Leach routing protocol to reduce energy consumption and to extend network lifetime. Proposed self organized cluster based energy balanced routing protocol (SCERP) selects a cluster head node by considering probability based on ratio of residual energy of the node and the average energy level of nodes in network, and the geometric distance between the candidate node to the BS as key parameters. The outcome of simulation shows that proposed protocol is better than Leach in terms of balancing energy consumption of nodes and extending WSN lifetime.

Author(s):  
Swedika Sharma

Wireless sensor network is the combination of sensor nodes where sensor nodes are distributed all over the network. There are some challenges that come into the wireless sensor network n context to energy efficiency, network lifetime, storage and battery backup. The most important feature of a routing protocol, in order to be efficient for WSNs, is the energy consumption and the extension of the network’s lifetime. In this paper, we have analyzed various routing techniques for WSN that increases the network lifetime and energy consumption.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Muni Venkateswarlu Kumaramangalam ◽  
Kandasamy Adiyapatham ◽  
Chandrasekaran Kandasamy

Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Tapan Kumar Jain ◽  
Davinder Singh Saini ◽  
Sunil Vidya Bhooshan

The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.


Wireless Sensor Network (WSN) is a huge collection of sensor nodes deployed without any predetermined infrastructure. They are powered by batteries and energy consumption is one of the major issues in WSN. Hence to prolong the lifetime of the networks, it is important to design the energy efficient optimized routing algorithm. In this paper, two hop forwarding scheme in AODV and Fuzzy Logic is proposed to find an optimal routing protocol and intermediate node acknowledgement is deducted by the use of Fuzzy rules. The parameters such as remaining energy, data packet transmission, packet received acknowledgement and number of rounds is given as input to the fuzzy system which gives an optimized routing decision. The efficacy of the proposed algorithm is evaluated using NS2 and compared with Fuzzy-based Energy-Aware Routing Mechanism (FEARM). The simulation results shows that the Fuzzy based AODV routing algorithm reduces the energy consumption, minimizes the routing response packets and improves the network life time compared to other similar routing protocols.


Author(s):  
Wan Isni Sofiah Wan Din ◽  
Asyran Zarizi Bin Abdullah ◽  
Razulaimi Razali ◽  
Ahmad Firdaus ◽  
Salwana Mohamad ◽  
...  

<span lang="EN-US">Wireless Sensor Network (WSN) is a distributed wireless connection that consists many wireless sensor devices. It is used to get information from the surrounding activities or the environment and send the details to the user for future work. Due to its advantages, WSN has been widely used to help people to collect, monitor and analyse data. However, the biggest limitation of WSN is about the network lifetime. Usually WSN has a small energy capacity for operation, and after the energy was used up below the threshold value, it will then be declared as a dead node. When this happens, the sensor node cannot receive and send the data until the energy is renewed. To reduce WSN energy consumption, the process of selecting a path to the destination is very important. Currently, the data transmission from sensor nodes to the cluster head uses a single hop which consumes more energy; thus, in this paper the enhancement of previous algorithm, which is MAP, the data transmission will use several paths to reach the cluster head. The best path uses a small amount of energy and will take a short time for packet delivery. The element of Shortest Path First (SPF) Algorithm that is used in a routing protocol will be implemented. It will determine the path based on a cost, in which the decision will be made depending on the lowest cost between several connected paths. By using the MATLAB simulation tool, the performance of SPF algorithm and conventional method will be evaluated. The expected result of SPF implementation will increase the energy consumption in order to prolong the network lifetime for WSN.</span>


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2739 ◽  
Author(s):  
Muhammad Usman Younus ◽  
Saif ul Islam ◽  
Sung Won Kim

A wireless sensor network (WSN) has achieved significant importance in tracking different physical or environmental conditions using wireless sensor nodes. Such types of networks are used in various applications including smart cities, smart building, military target tracking and surveillance, natural disaster relief, and smart homes. However, the limited power capacity of sensor nodes is considered a major issue that hampers the performance of a WSN. A plethora of research has been conducted to reduce the energy consumption of sensor nodes in traditional WSN, however the limited functional capability of such networks is the main constraint in designing sophisticated and dynamic solutions. Given this, software defined networking (SDN) has revolutionized traditional networks by providing a programmable and flexible framework. Therefore, SDN concepts can be utilized in designing energy-efficient WSN solutions. In this paper, we exploit SDN capabilities to conserve energy consumption in a traditional WSN. To achieve this, an energy-aware multihop routing protocol (named EASDN) is proposed for software defined wireless sensor network (SDWSN). The proposed protocol is evaluated in a real environment. For this purpose, a test bed is developed using Raspberry Pi. The experimental results show that the proposed algorithm exhibits promising results in terms of network lifetime, average energy consumption, the packet delivery ratio, and average delay in comparison to an existing energy efficient routing protocol for SDWSN and a traditional source routing algorithm.


Robust and efficient algorithms for routing and other process for a wireless sensor network are under active development due to technological advancements on wireless transmission systems. Each of the sensor nodes in a wireless sensor network either transmits or forwards the data packets to the base station. The main objective of the majority of the work in the literature is to save the energy consumption efficiently. The cluster based routing mechanism helps to achieve low energy consumption within the network. The network organizes its nodes as a cluster and selects a particular node as cluster head to manage the transmission within and between clusters. The majority of the clustering approach selects the cluster head using a thresholding based approach. Nodes having energy level higher than the threshold are the candidates for the cluster head selection. In the proposed approach the nodes remaining energy and the sum of distance between individual nodes to the cluster head node is considered. Optimal cluster head selection will help to increase the overall life time of the network. The distance between the sensor nodes is estimated using RSSI (Received Signal Strength Indicator) and other parameters measured from the physical layer. Experiments are conducted with simulation environment created with the NS-2 simulator and efficiency of the approach is analyzed in detail.


Author(s):  
Sridhar R. ◽  
N. Guruprasad

A Wireless Sensor Network includes the distributed sensor nodes using limited energy, to monitor the physical environments and forward to the sink node. Energy is the major resource in WSN for increasing the network lifetime. Several works have been done in this field but the energy efficient data gathering is still not improved. In order to amend the data gathering with minimal energy consumption, an efficient technique called chaotic whale metaheuristic energy optimized data gathering (CWMEODG) is introduced. The mathematical model called Chaotic tent map is applied to the parameters used in the CWMEODG technique for finding the global optimum solution and fast convergence rate. Simulation of the proposed CWMEODG technique is performed with different parameters such as energy consumption, data packet delivery ratio, data packet loss ratio and delay with deference to dedicated quantity of sensor nodes and number of packets. The consequences discussion shows that the CWMEODG technique progresses the data gathering and network lifetime with minimum delay as well as packet loss than the state-of-the-art methods.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 196 ◽  
Author(s):  
Raghul Priyadarshi ◽  
Hitesh Tripathi ◽  
Abhyuday Bhardwaj ◽  
Ankush Thakur

The lifetime of a network is reflected as one of the vital concerns in wireless sensor network because of a huge number of nodes and further its density and distribution. When the network size increases then routing protocol becomes one of the crucial issues that which routing protocol one should use so that network lifetime to be enhanced. Furthermore, sensor nodes must be alive to promise that network process must continue without any interruption or any loss of data in the network. In fact, there are a lot of clustering method is there to augment the network lifetime. But in this paper, presented routing protocol that is based on existing LEACH protocol called as K-mean clustering routing (KLEACH). Simulation results show that efficiency of the network has been improved and network lifetime has been also enhanced compared to existing LEACH protocol. Network lifetime of KLEACH protocol is almost increased by 40% and energy consumption is also decrease by almost 38% which reflects the good agreement of KLEACH algorithm compared to existing algorithm.


Sign in / Sign up

Export Citation Format

Share Document