scholarly journals Performance metric analysis of modified LEACH routing protocol in wireless sensor network

2017 ◽  
Vol 7 (1.5) ◽  
pp. 196 ◽  
Author(s):  
Raghul Priyadarshi ◽  
Hitesh Tripathi ◽  
Abhyuday Bhardwaj ◽  
Ankush Thakur

The lifetime of a network is reflected as one of the vital concerns in wireless sensor network because of a huge number of nodes and further its density and distribution. When the network size increases then routing protocol becomes one of the crucial issues that which routing protocol one should use so that network lifetime to be enhanced. Furthermore, sensor nodes must be alive to promise that network process must continue without any interruption or any loss of data in the network. In fact, there are a lot of clustering method is there to augment the network lifetime. But in this paper, presented routing protocol that is based on existing LEACH protocol called as K-mean clustering routing (KLEACH). Simulation results show that efficiency of the network has been improved and network lifetime has been also enhanced compared to existing LEACH protocol. Network lifetime of KLEACH protocol is almost increased by 40% and energy consumption is also decrease by almost 38% which reflects the good agreement of KLEACH algorithm compared to existing algorithm.

Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


Author(s):  
Swedika Sharma

Wireless sensor network is the combination of sensor nodes where sensor nodes are distributed all over the network. There are some challenges that come into the wireless sensor network n context to energy efficiency, network lifetime, storage and battery backup. The most important feature of a routing protocol, in order to be efficient for WSNs, is the energy consumption and the extension of the network’s lifetime. In this paper, we have analyzed various routing techniques for WSN that increases the network lifetime and energy consumption.


2013 ◽  
Vol 347-350 ◽  
pp. 1738-1742 ◽  
Author(s):  
Xiao Wen Ma ◽  
Xiang Yu

Wireless sensor networks comprise of minor battery driven devices with restricted energy resources.Once installed,the minor sensor nodes are usually unapproachable to the operator, and thus auxiliary of the energy source is not practicable.Hence,energy proficiency is a vital design issue that needs to be boosted in order to increase the lifetime of the network. LEACH is a popular hierarchical routing protocol which efficiently maintains the energy storage of nodes in Wireless Sensor Network (WSN).The nodes using LEACH are divided into clusters.The advantage of LEACH is that each node has the equal probability to be a cluster head,which makes the energy dissipation of each node be relatively balanced. This paper studies LEACH protocol, and focuses on how to decide the next hop nodes more reasonable when the data are transmitted at the steady state. Simulation has been done in NS2 and the results show that the algorithm after improved is more energy-efficient than LEACH protocol.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Muni Venkateswarlu Kumaramangalam ◽  
Kandasamy Adiyapatham ◽  
Chandrasekaran Kandasamy

Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.


Author(s):  
M.A. Pund ◽  
Shital Bahale ◽  
Jaya Ingole

Prolonging lifetime of wireless sensor network is a most significant problem due to energy constraint nature of sensor nodes. It is difficult to recharge nodes during network lifetime, to increase application area of WSN there is a need to design energy efficient clustering protocol for WSN. In this article there is a discussion about problems in Leach protocol and propose an improvement on the Leach routing protocol to reduce energy consumption and to extend network lifetime. Proposed self organized cluster based energy balanced routing protocol (SCERP) selects a cluster head node by considering probability based on ratio of residual energy of the node and the average energy level of nodes in network, and the geometric distance between the candidate node to the BS as key parameters. The outcome of simulation shows that proposed protocol is better than Leach in terms of balancing energy consumption of nodes and extending WSN lifetime.


Author(s):  
Sardjoeni Moedjiono ◽  
Aries Kusdaryono

Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, the authors propose power layer energy efficient routing protocol in wireless sensor network, named PLRP, which use power control and multi-hop routing protocol to control overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. The main idea of PLRP is the use of power control, which divide sensor node into group by base station uses layer of energy and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of PLRP compared to BCDCP and BIDRP based of hierarchical routing protocol. The simulation results show that PLRP achieve 25% and 30% of improvement on network lifetime.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772096435 ◽  
Author(s):  
Muhammad Ilyas ◽  
Zahid Ullah ◽  
Fakhri Alam Khan ◽  
Muhammad Hasanain Chaudary ◽  
Muhammad Sheraz Arshed Malik ◽  
...  

Internet of things grew swiftly and many services, software, sensors-embedded electronic devices and related protocols were developed and still in progress with full swing. Internet of things enabling physically existing things to see, hear, think and perform a notable task by allowing them to talk to each other and share useful information while making decision and caring-on/out their important tasks. Internet of things is greatly promoted by wireless sensor network as it becomes a perpetual layer for it. Wireless sensor network works as a base-stone for most of the Internet of things applications. There are severe general and specific threats and technical challenges to Internet of things–based sensor networks which must overcome to ensure adaptation and diffusion of it. Most of the limitations of wireless sensor networks are due to its resource constraint objects nature. The specified open research challenges in Internet of things–based sensor network are power consumption, network lifespan, network throughput, routing and network security. To overcome aforementioned problems, this work aimed to prolong network lifetime, improve throughput, decrease packet latency/packet loss and further improvise in encountering malicious nodes. To further tune the network lifetime in terms of energy, wireless harvesting energy is suggested in proposed three-layer cluster-based wireless sensor network routing protocol. The proposed mechanism is a three-tier clustering technique with implanted security mechanism to encounter malicious activities of sensor nodes and to slant them into blacklist. It is a centred-based clustering protocol, where selection of cluster head and grid head is carried out by sink node based on the value of its cost function. Moreover, hardware-based link quality estimators are used to check link effectiveness and to further improve routing efficiency. At the end, excessive experiments have been carried out to check efficacy of the proposed protocol. It outperforms most of its counterpart protocols such as fuzzy logic–based unequal clustering and ant colony optimization–based routing hybrid, Artificial Bee Colony-SD, enhanced three-layer hybrid clustering mechanism and energy aware multi-hop routing in terms of network lifetime, network throughput, average energy consumption and packet latency.


2012 ◽  
Vol 157-158 ◽  
pp. 503-506 ◽  
Author(s):  
Tao Yang ◽  
Pan Guo Fan ◽  
De Jun Mu

Wireless sensor network is always deployed in specific area for intrusion detection and environmental monitoring. The sensor nodes suffer mostly from their limited battery capacity.Maximizing the lifetime of the entire networks is mainly necessary considered in the design. Sliding the sensors in different barriers under the optimal barrier construction is a good solution for both maximizing network lifetime and providing predetermined coverage ratio. The simulation results demonstrate that the scheme can effectively reduce the energy consumption of the wireless sensor network and increase the network lifetime.


Sign in / Sign up

Export Citation Format

Share Document