scholarly journals Uniform Heating and Cooling of a Hollow Disc with Internal Water Channels

Author(s):  
Karel Adamek

The paper deals with practical problem of uniform temperature of heated or cooled disc mass. It presents the influence of thermal insulation and of inlets/outlets positioning on temperature uniformity and on total energy consumption during working cycle. Together with essential balances of mass and energy there is used the method of flow numerical simulation. Results can be used for increasing of both productivity and thermal effectivity of observed equipment.

2021 ◽  
Vol 71 (1) ◽  
pp. 124-133
Author(s):  
B. K. Tiwari ◽  
R. Sharma

This paper presents the design and analysis of the ‘Variable Buoyancy System (VBS)’ for depth control which is an essential operation for all underwater vehicles. We use the ‘Water Hydraulic Variable Buoyancy System (WHVBS)’ method to control the buoyancy and discuss details of the system design architecture of various components of VBS. The buoyancy capacity of the developed VBS is five kilograms and the performance of the VBS in standalone mode is analysed using numerical simulation. Presented VBS is operable to control the buoyancy up to sixty meters of depth and it can be directly installed to medium size UVs. Simulation results show that the developed VBS can reduce the energy consumption significantly and higher in each cycle (i.e. descending and ascending) of the same VBS in standalone mode being operated with either propeller or thruster for sixty meters depth of operation. Our results conclude and demonstrate that the designed VBS is effective in changing the buoyancy and controlling the heave velocity efficiently and this serves the purpose of higher endurance and better performances desired in rescue/attack operations related to the UVs both in civilian and defense domains.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 562
Author(s):  
Wei-Hsuan Hsu ◽  
Yi-Zhang Xie

With technological advancement, energy consumption and lack of energy supply are inevitable. Approximately 20% of total energy consumption is used for artificial light in standard office buildings. To reduce energy consumption for illumination purposes, a sunlight guiding panel was used to increase the amount of sunlight available indoors. However, in most designs of a sunlight guiding panel, the panel has to be placed on the outdoor surface of a window glass. This type of design is inconvenient for assembling and cleaning. To enhance the practicality of a sunlight guiding panel, we attempted to place the sunlight guiding panel on the indoor surface of a window glass. The simulation results revealed that when the sunlight guiding panel was placed on the indoor surface of a window glass, the aspect ratio of the light-guiding structure of the sunlight guiding panel had to be increased for guiding the sunlight from outdoors so as to increase the amount of sunlight indoors. To fabricate the proposed sunlight guiding panel, UV nanoimprint lithography was applied to pattern the light-guiding structure of the sunlight guiding panel. Moreover, a mold with a high-precision light-guiding structure was used in UV nanoimprint lithography. The mold was fabricated using ultraprecision machining technology. Both analytical and experimental investigations were conducted to confirm the proposed design. The average light-guiding efficiency was 89.9% with a solar elevation angle range of 35° to 65°, and the experimental results agreed well with the simulation results. This study elucidates light-guiding efficiency when the sunlight guiding panel is placed on the indoor surface of a window glass, which can increase the usage convenience and application potential of sunlight guiding panels.


2010 ◽  
Vol 168-170 ◽  
pp. 1735-1741
Author(s):  
Mao Yan ◽  
Li Zhu ◽  
Yi Ping Wang ◽  
Ming Ze Zhu

With the high proportion of building energy consumption in the total energy consumption, it is of great importance to relieve the shortage of conventional energy resources and improve the building environment by incorporating solar energy into buildings. A new type solar roof panels were designed and tested in the present paper, which perfectly achieves the integration of solar equipment with building envelope. This panel can act as the construction component for building envelope and completely removes the double-skin mode for conventional solar equipment, as well as the functional equipment for heating and cooling collecting. Corrugated colored steel roof panel was tested under various climate conditions and operation conditions. The results show that in a typical sunny day the average heat collecting efficiency is 49% and the average cooling capacity is 100W/m2. In a cloudy day, the average heat collecting efficiency is 41% and the average cooling capacity is 84W/m2.


2014 ◽  
Vol 716-717 ◽  
pp. 780-784
Author(s):  
Shuo Li ◽  
Shu Cai Wang ◽  
Fang Cheng ◽  
Gao Bing Xia

The gas flow in the cold storage plays a very important role in the effect of cold storages of procambarus clarkii. Only the reasonable gas flow ensures the uniform temperature field.The paper uses the technique of computational fluid dynamics (CFD) to conduct the numerical simulation of the flow field and finds out the law of the distribution of the temperature field,on the basis of which the numerical simulation of non steady state of the freezing process of the frozen products is carried out.The experiments prove that the simulation results can better reflect the reality,and show that CFD tools can play an important role in the design and optimization of cold storages.


2021 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Hassan Bazazzadeh ◽  
Adam Nadolny ◽  
Seyedeh Sara Hashemi Safaei

The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.


Author(s):  
Bruno Mataloto ◽  
Joao C. Ferreira ◽  
Nuno Cruz

In this research paper we describe the development phase of a low-cost LoRa IoT solution applied to a kindergarten school with three years results. A set of sensors solution was developed in a LoRa communication board, battery powered, providing a simplified setup process. These sensors were used in order to measure temperature, humidity, luminosity, air quality and presence. Also, energy monitor solutions were integrated. The acquired data is transmitted and analysed for knowledge extraction, identifying savings and other related KPIs. From data, automatic saving actions were performed towards heating and cooling systems, lighting and a set of if-then actions were developed for automatic cost-saving actions, based on infrared signals to heating/cooling systems using some procedure of external command devices. This approach avoids the usage of proprietary vendor solutions in a flexible approach that can easily be deployed to any building facility. This is an important achievement since most of the building consumption is based on heating and cooling systems. In a three years test of the solution, the total energy consumption savings surpassed 20%


2022 ◽  
Vol 2148 (1) ◽  
pp. 012043
Author(s):  
Hongyu Zhang ◽  
Yajing Li ◽  
Yifei Wang ◽  
Miaocheng Weng ◽  
Fang Liu

Abstract The payload of the Chang’e-4 biological experiment is used as an object for designing and analyzing the location of cold and heat sources. The research compares and analyzes the energy consumption and temperature uniformity of cooling and heating sources mounted on different surfaces using Thermal Desktop/Sinda Fluint, which may be used to guide the design and operation of active thermal control systems. The results indicate that when the hot and cold sources are mounted on the payload’s top surface, the total energy consumption of the active thermal control system is minimized and temperature uniformity is improved.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2842 ◽  
Author(s):  
Daniel Mann ◽  
Cindy Yeung ◽  
Roberto Habets ◽  
Zeger Vroon ◽  
Pascal Buskens

The building sector contributes approximately one third of the total energy consumption worldwide. A large part of this energy is used for the heating and cooling of buildings, which can be drastically reduced by use of energy-efficient glazing. In this study, we performed building energy simulations on a prototypical residential building, and compared commercially available static (low-e, solar IR blocking) to newly developed adaptive thermochromic glazing systems for various climate regions. The modeling results show that static energy-efficient glazing is mainly optimized for either hot climates, where low solar heat gain can reduce cooling demands drastically, or cold climates, where low-e properties have a huge influence on heating demands. For intermediate climates, we demonstrate that adaptive thermochromic glazing in combination with a low-e coating is perfectly suited. The newly developed thermochromic glazing can lead to annual energy consumption improvement of up to 22% in comparison to clear glass, which exceeds all other glazing systems. Furthermore, we demonstrate that in the Netherlands the use of this new glazing system can lead to annual cost savings of EU 638 per dwelling (172 m2, 25% window façade), and to annual nationwide CO2 savings of 4.5 Mt. Ergo, we show that further development of thermochromic smart windows into market-ready products can have a huge economic, ecological and societal impact on all intermediate climate region in the northern hemisphere.


2019 ◽  
Vol 111 ◽  
pp. 03052 ◽  
Author(s):  
Mohammed Khalaf ◽  
Touraj Ashrafian ◽  
Cem Demirci

The energy conversations methods and techniques take a significant role in the energy performance of the buildings. Façade and shading systems are in continuous development, and recent studies are showing the importance of implementation of such systems to reduce energy consumption and enhance the effectiveness of the building performance. School buildings are mostly being used during daytime, hence, require active use of sunlight. A measure that is taken on a school building envelope can prevent overheating and overcooling and reduce the heating and cooling energy consumption but at the same time can increase the lighting energy consumption vice versa. Thus, it is necessary to optimise the energy required for climatisation of a building with lighting energy demand. The main aim of the paper is to provide analysis for façade and shading systems applied to a school building and study the effectiveness of it on energy consumption and conservation. The case study for this paper is a typical building project designed to be located in Istanbul, Turkey and has a traditional façade system which is clear double layer windows without any shading devices. The analyses of the energy efficiency of these systems will be presented. The different glazing types and shading systems alternatives will show the most efficient one to be used as some optimised alternatives for the systems. Findings indicate that proper glazing and shading systems can reduce the needed energy for heating and lightening and thus total energy consumption of a school building significantly.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 524
Author(s):  
Alojz Poredoš

Energy consumption for heating and cooling in buildings and industry accounts for almost half of total energy consumption in all sectors [...]


Sign in / Sign up

Export Citation Format

Share Document