scholarly journals Human identification and tracking using ultra-wideband-vision data fusion in unstructured environments

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 124
Author(s):  
Alessandro Luchetti ◽  
Andrea Carollo ◽  
Luca Santoro ◽  
Matteo Nardello ◽  
Davide Brunelli ◽  
...  

<p class="Abstract">Nowadays, the importance of working in changing and unstructured environments such as logistics warehouses through the cooperation between Automated Guided Vehicles (AGV) and the operator is increasingly demanded. The challenge addressed in this article aims to solve two crucial functions of autonomy: operator identification, and tracking. These tasks are necessary to enable an AGV to follow the selected operator along his path. This paper presents an innovative, accurate, robust, autonomous, and low-cost operator real-time tracking system, leveraging the inherent complementarity of the uncertainty regions (2D ellipses) between ultra-wideband (UWB) transceivers and cameras. The test campaign shows how the UWB system has higher uncertainty in the angular direction. In contrast, in the case of the vision system, the uncertainty is predominant along the radial coordinate. Due to the nature of the data, a sensor fusion demonstrates improvement in the accuracy and goodness of the final tracking.</p>

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael Johnson ◽  
Martin Hayes

AbstractThis paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.


2014 ◽  
Vol 1055 ◽  
pp. 334-337
Author(s):  
Jia Xin Zhang ◽  
Xiao La Yao ◽  
Jiang Tao Miao

This paper presents an Eye-to-hand system, designed for hand-eye system presents a automatically real-time tracking of moving targets control strategy. The first strategy uses a color mark on the target, the use of binocular stereo vision system for color measurement and then in the visual system of the target three-dimensional reconstruction to give the three-dimensional coordinates in the visual coordinate system when the target position and orientation when changes according to the amount of change in the three-dimensional coordinates of the direct control of the robot arm motion of each joint, enabling the tracking of moving targets.


2014 ◽  
Vol 12 (3) ◽  
pp. 389-407 ◽  
Author(s):  
Wael M. El-Medany ◽  
Alauddin Al-Omary ◽  
Riyadh Al-Hakim ◽  
Mustafa Nusaif

Purpose – The purpose of this paper is to present a development to the hardware and software of a real-time tracking system that provides the position of the tracked vehicle accurately using fairly low-cost equipment and services. Vehicle tracking industries are expanding as businesses are interested to know their fleet vehicles positions minute by minute every day. Many systems were proposed recently that can provide such information. Design/methodology/approach – The system is implemented using GM862 cellular quad band module. A monitoring server and a graphical user interface on a Web site have also been implemented to view the current location of a vehicle on a specific map. Findings – The experiments were conducted and tested in different areas of the Kingdom Of Bahrain using Google maps, and results are discussed. Originality/value – The developed system has been compared to the available and imported tracking systems to some of the telematics companies in Bahrain, and the comparison has been discussed.


2015 ◽  
Vol 44 (4) ◽  
pp. 305-323 ◽  
Author(s):  
Laurel S. Pardue ◽  
Christopher Harte ◽  
Andrew P. McPherson

Author(s):  
Gabriel Ortiz ◽  
Fredrik Treven ◽  
Lars Svensson ◽  
Per Larsson-Edefors ◽  
Sebastian Johansson-Mauricio

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 343
Author(s):  
Kim Bjerge ◽  
Jakob Bonde Nielsen ◽  
Martin Videbæk Sepstrup ◽  
Flemming Helsing-Nielsen ◽  
Toke Thomas Høye

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking &gt; north-south Earth’s axis tracking &gt; north-south tilt tracking (β = 15°) &gt; north-south tilt tracking (β = 45) &gt; north-south horizontal tracking &gt; east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


Sign in / Sign up

Export Citation Format

Share Document