scholarly journals Reversible sensing of nitrogen dioxide using photoluminescent CdSe/ZnS quantum dots and enhanced response by combination with noble metals

2022 ◽  
Vol 130 (1) ◽  
pp. 180-186
Author(s):  
Masanori ANDO ◽  
Kosuke INAGAKI ◽  
Hideya KAWASAKI ◽  
Yasushi SHIGERI
Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3542
Author(s):  
Sebastian Cajigas ◽  
Jahir Orozco

Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.


2021 ◽  
Vol 01 ◽  
Author(s):  
V.A. Barachevsky

: The results of own spectral-kinetic studies in the field of nanophotochromism of the core‒shell type hybrid compounds are integrated. The properties of photochromic nanoparticles of this type based on photochromic spirocompounds (spiropyrans and spirooxazines), chromenes, and diarylethenes and nanoparticles of noble metals (Ag and Au), diamonds, graphene and its oxide, silica, fullerenes, and quantum dots are considered. Preparation methods of photochromic nanoparticles have been developed.


2015 ◽  
Vol 87 (4) ◽  
pp. 2087-2093 ◽  
Author(s):  
Yehan Yan ◽  
Jian Sun ◽  
Kui Zhang ◽  
Houjuan Zhu ◽  
Huan Yu ◽  
...  

2019 ◽  
Vol 92 (12) ◽  
pp. 362-368
Author(s):  
Masanori ANDO ◽  
Kosuke INAGAKI ◽  
Hideya KAWASAKI ◽  
Yasushi SHIGERI
Keyword(s):  

Author(s):  
J.C.S. Kim ◽  
M.G. Jourden ◽  
E.S. Carlisle

Chronic exposure to nitrogen dioxide in rodents has shown that injury reaches a maximum after 24 hours, and a reparative adaptive phase follows (1). Damage occurring in the terminal bronchioles and proximal portions of the alveolar ducts in rats has been extensively studied by both light and electron microscopy (1).The present study was undertaken to compare the response of lung tissue to intermittent exposure to 10 ppm of nitrogen dioxide gas for 4 hours per week, while the hamsters were on a vitamin A deficient diet. Ultrastructural observations made from lung tissues obtained from non-gas exposed, hypovitaminosis A animals and gas exposed animals fed a regular commercially prepared diet have been compared to elucidate the specific effect of vitamin A on nitrogen dioxide gas exposure. The interaction occurring between vitamin A and nitrogen dioxide gas has not previously been investigated.


Author(s):  
E. I. Alessandrini ◽  
M. O. Aboelfotoh

Considerable interest has been generated in solid state reactions between thin films of near noble metals and silicon. These metals deposited on Si form numerous stable chemical compounds at low temperatures and have found applications as Schottky barrier contacts to silicon in VLSI devices. Since the very first phase that nucleates in contact with Si determines the barrier properties, the purpose of our study was to investigate the silicide formation of the near noble metals, Pd and Pt, at very thin thickness of the metal films on amorphous silicon.Films of Pd and Pt in the thickness range of 0.5nm to 20nm were made by room temperature evaporation on 40nm thick amorphous Si films, which were first deposited on 30nm thick amorphous Si3N4 membranes in a window configuration. The deposition rate was 0.1 to 0.5nm/sec and the pressure during deposition was 3 x 10 -7 Torr. The samples were annealed at temperatures in the range from 200° to 650°C in a furnace with helium purified by hot (950°C) Ti particles. Transmission electron microscopy and diffraction techniques were used to evaluate changes in structure and morphology of the phases formed as a function of metal thickness and annealing temperature.


Author(s):  
L.D. Schmidt ◽  
K. R. Krause ◽  
J. M. Schwartz ◽  
X. Chu

The evolution of microstructures of 10- to 100-Å diameter particles of Rh and Pt on SiO2 and Al2O3 following treatment in reducing, oxidizing, and reacting conditions have been characterized by TEM. We are able to transfer particles repeatedly between microscope and a reactor furnace so that the structural evolution of single particles can be examined following treatments in gases at atmospheric pressure. We are especially interested in the role of Ce additives on noble metals such as Pt and Rh. These systems are crucial in the automotive catalytic converter, and rare earths can significantly modify catalytic properties in many reactions. In particular, we are concerned with the oxidation state of Ce and its role in formation of mixed oxides with metals or with the support. For this we employ EELS in TEM, a technique uniquely suited to detect chemical shifts with ∼30Å resolution.


Sign in / Sign up

Export Citation Format

Share Document