A NEW TEICHICHNOID TRACE FOSSIL SYRINGOMORPHA CYPRENSIS FROM THE MIOCENE OF CYPRUS

Palaios ◽  
2019 ◽  
Vol 34 (10) ◽  
pp. 506-514 ◽  
Author(s):  
OLMO MIGUEZ-SALAS ◽  
FRANCISCO J. RODRÍGUEZ-TOVAR ◽  
ALFRED UCHMAN

ABSTRACTA new teichichnoid trace fossil, Syringomorpha cyprensis from the Miocene of Cyprus, is proposed as a vertical burrow composed of an arcuate-like tube with horizontal parts to subhorizontal distally and vertical to subvertical parts proximally and triangular spreiten in the inner corner of the tube. Previously, this ichnogenus was represented only by the lower Paleozoic, shallow marine S. nilssoni, which disappeared after the Cambrian. Syringomorpha cyprensis marks the reappearance of similar behavior, in a deep-sea environment with pelagic, contouritic, and turbiditic sedimentation, influenced by frequent turbiditic and bottom current flows. Both ichnospecies of Syringomorpha could be produced by the same taxonomic group of probable worm like organisms (polychaetes?). Energy conditions were a stronger influence on the distribution of S. cyprensis tracemaker rather depth.

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 196
Author(s):  
Jiangbo Ren ◽  
Yan Liu ◽  
Fenlian Wang ◽  
Gaowen He ◽  
Xiguang Deng ◽  
...  

Deep-sea sediments with high contents of rare-earth elements and yttrium (REY) are expected to serve as a potential resource for REY, which have recently been proved to be mainly contributed by phosphate component. Studies have shown that the carriers of REY in deep-sea sediments include aluminosilicate, Fe-Mn oxyhydroxides, and phosphate components. The ∑REY of the phosphate component is 1–2 orders of magnitude higher than those of the other two carriers, expressed as ∑REY = 0.001 × [Al2O3] − 0.002 × [MnO] + 0.056 × [P2O5] − 32. The sediment P2O5 content of 1.5% explains 89.1% of the total variance of the sediment ∑REY content. According to global data, P has a stronger positive correlation with ∑REY compared with Mn, Fe, Al, etc.; 45.5% of samples have a P2O5 content of less than 0.25%, and ∑REY of not higher than 400 ppm. The ∑REY of the phosphate component reaches n × 104 ppm, much higher than that of marine phosphorites and lower than that of REY-phosphate minerals, which are called REY-rich phosphates in this study. The results of microscopic observation and separation by grain size indicate that the REY-rich phosphate component is mainly composed of bioapatite. When ∑REY > 2000 ppm, the average CaO/P2O5 ratio of the samples is 1.55, indicating that the phosphate composition is between carbonate fluoroapatite and hydroxyfluorapatite. According to a knowledge map of sediment elements, the phosphate component is mainly composed of P, Ca, Sr, REY, Sc, U, and Th, and its chemical composition is relatively stable. The phosphate component has a negative Ce anomaly and positive Y anomaly, and a REY pattern similar to that of marine phosphorites and seawater. After the early diagenesis process (biogeochemistry, adsorption, desorption, transformation, and migration), the REY enrichment in the phosphate component is completed near the seawater/sediment interface. In the process of REY enrichment, the precipitation and enrichment of P is critical. According to current research progress, the REY enrichment is the result of comprehensive factors, including low sedimentation rate, high ∑REY of the bottom seawater, a non-carbonate depositional environment, oxidation conditions, and certain bottom current conditions.


2022 ◽  
Vol 128 (1) ◽  
Author(s):  
ANDREA BAUCON ◽  
GIROLAMO LO RUSSO ◽  
CARLOS NETO DE CARVALHO ◽  
FABRIZIO FELLETTI

The Italian Northern Apennines are acknowledged as the place where ichnology was born, but there is comparatively little work about their ichnological record. This study bridges this gap by describing two new ichnosites from the locality of Pierfrancesco, which preserve an abundant, low-disparity trace-fossil assemblage within the Late Cretaceous beds of the M. Cassio Flysch. Results show that lithofacies and ichnotaxa are rhythmically organized. The base of each cycle consists of Megagrapton-bearing calciclastic turbidites, which are overlain by marlstone beds with an abundant, low-disparity assemblage of trace fossils. This includes Chondrites intricatus, C. patulus, C. targionii, C. recurvus and Cladichnus fischeri. The cycle top consists of mudstones with no distinct burrows. The rhythmic pattern of Pierfrancesco reflects a deep-sea ecological succession, in which species and behaviour changed as turbidite-related disturbances altered the seafloor. This study opens the question of whether the Chondrites-Cladichnus ichnocoenosis represents low-oxygen or nutrient-poor settings.


Author(s):  
Rahmat Bin Aburaera Sileh ◽  
Danial Sultan ◽  
Ihsan Ihsan

The purpose of this study was to determine the yield and type of catch, the comparison of the number of catches and the efforts to manage electronic FADs on Gill Net fishing gear. This research was conducted in Bulukumba waters from February to March 2017. Data collection was carried out by direct observation of fishermen in Bulukumba waters. The samples used in this study were FADs installed by fishermen in the waters of Bulukumba as many as 20 locations. Based on the research results, fish catches with electronic FADs ranged from 98 to 131 fish per fishing trip with a total catch of 2,324 fish. Meanwhile, the usual FAD catches ranged from 51 to 84 fish per fishing trip with a total catch of 1,313 fish and the highest type of fish was selar, followed by male mackerel, Selar bentong, white Kuwe, Layang, Barracuda, selangat and Mata goyang. The ratio between the catch and the use of electronic FADs was 64%, while the regular FADs were 36%. Considering that FADs are an effective tool in collecting fish, a sustainable management strategy is needed, including by (1) community based management, (2) limiting fishing efforts, (3) stopping the addition of shallow marine FADs. , (4) use of fishing gear with large mesh sizes and (5) prioritize the use of deep sea FADs.


Paleobiology ◽  
1979 ◽  
Vol 5 (2) ◽  
pp. 107-125 ◽  
Author(s):  
Jennifer A. Kitchell

The foraging paradigm of trace fossil theory has historically accorded random behavior to non-food-limited deposit-feeders and non-random behavior to food-limited feeders. A series of randomness measures derived from empirical modeling, simulation modeling, stochastic modeling and probability theory applied to foraging patterns observed in deep-sea bottom photographs from the Arctic and Antarctic yielded a behavioral continuum of increasing non-randomness. A linear regression of trace positions along the continuum to bathymetric data did not substantiate the optimal foraging efficiency-depth dependence model of trace fossil theory, except that all traces exhibited a greater optimization than that of simulated random foraging. It is hypothesized that optimization as evidenced by non-random foraging strategies represents maximization of the cost/benefit ratio of resource exploitation to risk of predation and that individual foraging patterns reflect an exploration response to the morphometry of a patchily distributed food resource. Differential predation and competition may account for the co-occurrence of random and non-random strategies within the same bathymetric zone.


1992 ◽  
Vol 66 (2) ◽  
pp. 293-311 ◽  
Author(s):  
D. Jeffrey Over

The Woodford Shale of south-central Oklahoma was deposited in an offshore, quiet-water, oxygen-poor setting on the southern margin of North America in assocation with other dark organic-rich shales of the Upper Devonian–Lower Carboniferous black-shale facies. The basal Woodford was deposited unconformably over lower Paleozoic carbonate strata as a south-to-north transgressive unit during the Frasnian and early Famennian. Black shales and cherts lie directly above the basal beds.Phosphatic shales in the upper Woodford contain a conodont succession characterized by three distinct environmentally controlled faunas. The lower fauna is characterized by Palmatolepis gracilis ssp., Branmehla inornata, Bispathodus stabilis, and Pseudopolygnathus marburgensis trigonicus, indicative of the Late Devonian Lower expansa Zone to Upper praesulcata Zone. The middle fauna, which spans the Devonian–Carboniferous (D/C) boundary, is characterized by Polygnathus communis communis and species of Protognathodus. On the Lawrence uplift the D/C boundary is disconformable, as indicated by the absence of Protognathodus kockeli before the first occurrence of Siphonodella sulcata. Light-colored phosphate laminae and beds, indicative of erosion and nondeposition, and a change in biofacies from an offshore palmatolepid–bispathodid fauna to a more nearshore, palmatolepid–polygnathid–protognathodid fauna indicate higher energy conditions and a lowering of sea level associated with the boundary interval. In the eastern Arbuckle Mountains the D/C boundary is apparently conformable, marked by a green shale interval containing a Protognathodus fauna. Species of Siphonodella, indicative of an offshore setting, characterize the third and youngest fauna. The Early Carboniferous sulcata, Lower duplicata, and Upper duplicata Zones are recognized in the upper Woodford. The Woodford Shale is conformably overlain by the “pre-Welden Shale’ and its equivalents, or unconformably overlain by the lower Caney Shale (Osagean?–Meramecian) in the northern outcrop regions and the Sycamore Formation (late Osagean?–Meramecian) in the southern Arbuckle Mountains.


1986 ◽  
Vol 23 (4) ◽  
pp. 504-526 ◽  
Author(s):  
Lewis H. King ◽  
Gordon B. J. Fader ◽  
W. A. M. Jenkins ◽  
Edward L. King

Analyses of seismic reflection profiles supported by lithological and palynological studies of core samples from submarine outcrops indicate that the lower Paleozoic succession of the Avalon Terrane, southeast Newfoundland, is continuous offshore. The succession crops out over an area greater than 30 000 km2 and is approximately 8 km thick. The sequence is dominantly siltstone and is of Late Cambrian to ?Devonian or younger age. It is relatively unmetamorphosed, underlain by Hadrynian acoustic basement, and overlain along its eastern and southern margins by a Mesozoic–Cenozoic succession that is economically important from an oil and gas perspective.Lithofacies studies indicate that in Early Ordovician time restricted shallow-marine conditions probably prevailed over a vast area of the Avalon Terrane. Upper Ordovician and Silurian siltstones show evidence of deposition under more-dynamic and well-oxygenated conditions and probably represent a normal shallow-marine environment. Redbeds of possible Devonian or younger age are interpreted to be of continental origin. Black shales of Ordovician age are potential source rocks for the generation of hydrocarbons.


1980 ◽  
Vol 17 (9) ◽  
pp. 1259-1270 ◽  
Author(s):  
R. K. Pickerill

An Ordovician flysch trace fossil assemblage from the Aroostook–Matapedia Carbonate Belt, northern New Brunswick, consists of the following identifiable ichnogenera: Alcyonidiopsis, Asteriacites, Asterosoma, Belorhaphe, Bifasciculus, Buthotrephis, Chondrites, Cochlichnus, Cosmorhaphe, Diplichnites, Fucusopsis, Glockeria, Gyrochorte, Helminthoida, Helminthopsis, Neonereites, Paleodictyon, Planolites, Protopaleodictyon, Scalarituba, Spirodesmos, Spirorhaphe, and Taenidium. The stratigraphic range of six ichnogenera, viz. Glockeria, Gyrochorte, Helminthoida, Spirodesmos, Spirorhaphe, and Taenidium, is, therefore, now extended to rocks of Ordovician age.The diversity exhibited by the assemblage is inconsistent with currently proposed models of Phanerozoic flysch trace fossil diversity. It is suggested that existing models suffer from an inadequacy of sampling and systematic effort per period of geological time, as reflected by the limited number of post-Cambrian/pre-Cretaceous, particularly post-Carboniferous/pre-Cretaceous, adequately documented flysch ichnoassemblages. The assemblage described here clearly illustrates a significant radiation of deep-sea behavioural diversity in the Ordovician. This is possibly related to the development during the Ordovician of a sufficient oxygen concentration and supply of organic detritus in the deep sea or colonization of deeper-water habitats concomitant with the significant diversification of Ordovician shelf benthic communities.


Sign in / Sign up

Export Citation Format

Share Document