scholarly journals Lens Raster as a Source of Distortions in Integral Photography

2018 ◽  
Vol 9 (4) ◽  
pp. 337-346
Author(s):  
E. G. Zaytseva ◽  
A. A. Kisliuk ◽  
T. O. Laryonova ◽  
N. N. Dubina

Analysis of methods for recording and reproducing a three-dimensional image allows to distinguish two different approaches. The fi approach consists in formation of stereoscopic images, the second one provides the formation of an optical object model and includes particularly a group of integral photography methods .The use of integral photography methods for recording and reproducing volumetric images is relevant due to the lack of fl inherent for stereoscopic methods and relative simplicity of technical implementation. Lens raster used in this method is a possible source of image distortion. This paper aim is to determine the range of parameters of the lens system, namely, the allowable values of the pitch of the lens raster, providing distortions absence caused this raster.Types of possible distortions and sources of their occurrence are indicated. The requirements for the pitch of the lenticular raster are formulated, based on conditions of false information absence, absence of discontinuity of the image in depth and in the transverse direction, and invisibility of lens elements of the reproduction matrix.Studies shoed that the lenticular pitch is limited by the four inequalities, three of which limit the pitch value from below, and the fourth one from above. A set of conditions limiting the step of the lens matrix was analyzed. The boundaries of allowable step values depend on four groups of parameters: raster dimensions, location of the subjects, reproduction and observation parameters. Result of the method usage as a dependence of the allowable range of the pitch of the lenticular raster on transverse coordinate of the recorded point with fi values of other parameters is presented.

Author(s):  
R. A. Crowther

The reconstruction of a three-dimensional image of a specimen from a set of electron micrographs reduces, under certain assumptions about the imaging process in the microscope, to the mathematical problem of reconstructing a density distribution from a set of its plane projections.In the absence of noise we can formulate a purely geometrical criterion, which, for a general object, fixes the resolution attainable from a given finite number of views in terms of the size of the object. For simplicity we take the ideal case of projections collected by a series of m equally spaced tilts about a single axis.


2011 ◽  
Vol 131 (2) ◽  
pp. 320-328 ◽  
Author(s):  
Cunwei Lu ◽  
Hiroya Kamitomo ◽  
Ke Sun ◽  
Kazuhiro Tsujino ◽  
Genki Cho

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1042
Author(s):  
Rafał Krupiński

The paper presents the opportunities to apply computer graphics in an object floodlighting design process and in an analysis of object illumination. The course of object floodlighting design has been defined based on a virtual three-dimensional geometric model. The problems related to carrying out the analysis of lighting, calculating the average illuminance, luminance levels and determining the illuminated object surface area are also described. These parameters are directly tied with the calculations of the Floodlighting Utilisation Factor, and therefore, with the energy efficiency of the design as well as the aspects of light pollution of the natural environment. The paper shows how high an impact of the geometric model of the object has on the accuracy of photometric calculations. Very often the model contains the components that should not be taken into account in the photometric calculations. The research on what influence the purity of the geometric mesh of the illuminated object has on the obtained results is presented. It shows that the errors can be significant, but it is possible to optimise the 3D object model appropriately in order to receive the precise results. For the example object presented in this paper, removing the planes that do not constitute its external surface has caused a two-fold increase in the average illuminance and average luminance. This is dangerous because a designer who wants to achieve a specific average luminance level in their design without optimizing the model will obtain the luminance values that will actually be much higher.


Author(s):  
P.G Young ◽  
T.B.H Beresford-West ◽  
S.R.L Coward ◽  
B Notarberardino ◽  
B Walker ◽  
...  

Image-based meshing is opening up exciting new possibilities for the application of computational continuum mechanics methods (finite-element and computational fluid dynamics) to a wide range of biomechanical and biomedical problems that were previously intractable owing to the difficulty in obtaining suitably realistic models. Innovative surface and volume mesh generation techniques have recently been developed, which convert three-dimensional imaging data, as obtained from magnetic resonance imaging, computed tomography, micro-CT and ultrasound, for example, directly into meshes suitable for use in physics-based simulations. These techniques have several key advantages, including the ability to robustly generate meshes for topologies of arbitrary complexity (such as bioscaffolds or composite micro-architectures) and with any number of constituent materials (multi-part modelling), providing meshes in which the geometric accuracy of mesh domains is only dependent on the image accuracy (image-based accuracy) and the ability for certain problems to model material inhomogeneity by assigning the properties based on image signal strength. Commonly used mesh generation techniques will be compared with the proposed enhanced volumetric marching cubes (EVoMaCs) approach and some issues specific to simulations based on three-dimensional image data will be discussed. A number of case studies will be presented to illustrate how these techniques can be used effectively across a wide range of problems from characterization of micro-scaffolds through to head impact modelling.


Sign in / Sign up

Export Citation Format

Share Document