scholarly journals Evaluation of metal objects surface parameters informativity using 2D­ and 3D­data For classification of fractures

Author(s):  
V. A. Ganchenko ◽  
E. E. Marushko ◽  
L. P. Podenok ◽  
A. V. Inyutin

This article describes evaluation the information content of metal objects surfaces for classification of fractures using 2D and 3D data. As parameters, the textural characteristics of Haralick, local binary patterns of pixels for 2D images, macrogeometric descriptors of metal objects digitized by a 3D scanner are considered. The analysis carried out on basis of information content estimation to select the features that are most suitable for solving the problem of metals fractures classification. The results will be used for development of methods for complex forensic examination of complex polygonal surfaces of solid objects for automated system for analyzing digital images.

Author(s):  
R. Hänsch ◽  
T. Weber ◽  
O. Hellwich

The extraction and description of keypoints as salient image parts has a long tradition within processing and analysis of 2D images. Nowadays, 3D data gains more and more importance. This paper discusses the benefits and limitations of keypoints for the task of fusing multiple 3D point clouds. For this goal, several combinations of 3D keypoint detectors and descriptors are tested. The experiments are based on 3D scenes with varying properties, including 3D scanner data as well as Kinect point clouds. The obtained results indicate that the specific method to extract and describe keypoints in 3D data has to be carefully chosen. In many cases the accuracy suffers from a too strong reduction of the available points to keypoints.


ISRN Robotics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Bryan Willimon ◽  
Ian Walker ◽  
Stan Birchfield

We present a multilayer approach to classify articles of clothing within a pile of laundry. The classification features are composed of color, texture, shape, and edge information from 2D and 3D data within a local and global perspective. The contribution of this paper is a novel approach of classification termed L-M-H, more specifically LC-S-H for clothing classification. The multilayer approach compartmentalizes the problem into a high (H) layer, multiple midlevel (characteristics (C), selection masks (S)) layers, and a low (L) layer. This approach produces “local” solutions to solve the global classification problem. Experiments demonstrate the ability of the system to efficiently classify each article of clothing into one of seven categories (pants, shorts, shirts, socks, dresses, cloths, or jackets). The results presented in this paper show that, on average, the classification rates improve by +27.47% for three categories (Willimon et al., 2011), +17.90% for four categories, and +10.35% for seven categories over the baseline system, using SVMs (Chang and Lin, 2001).


2021 ◽  
Vol 7 (3) ◽  
pp. 209-219
Author(s):  
Iris J Holzleitner ◽  
Alex L Jones ◽  
Kieran J O’Shea ◽  
Rachel Cassar ◽  
Vanessa Fasolt ◽  
...  

Abstract Objectives A large literature exists investigating the extent to which physical characteristics (e.g., strength, weight, and height) can be accurately assessed from face images. While most of these studies have employed two-dimensional (2D) face images as stimuli, some recent studies have used three-dimensional (3D) face images because they may contain cues not visible in 2D face images. As equipment required for 3D face images is considerably more expensive than that required for 2D face images, we here investigated how perceptual ratings of physical characteristics from 2D and 3D face images compare. Methods We tested whether 3D face images capture cues of strength, weight, and height better than 2D face images do by directly comparing the accuracy of strength, weight, and height ratings of 182 2D and 3D face images taken simultaneously. Strength, height and weight were rated by 66, 59 and 52 raters respectively, who viewed both 2D and 3D images. Results In line with previous studies, we found that weight and height can be judged somewhat accurately from faces; contrary to previous research, we found that people were relatively inaccurate at assessing strength. We found no evidence that physical characteristics could be judged more accurately from 3D than 2D images. Conclusion Our results suggest physical characteristics are perceived with similar accuracy from 2D and 3D face images. They also suggest that the substantial costs associated with collecting 3D face scans may not be justified for research on the accuracy of facial judgments of physical characteristics.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Imayanmosha Wahlang ◽  
Arnab Kumar Maji ◽  
Goutam Saha ◽  
Prasun Chakrabarti ◽  
Michal Jasinski ◽  
...  

This article experiments with deep learning methodologies in echocardiogram (echo), a promising and vigorously researched technique in the preponderance field. This paper involves two different kinds of classification in the echo. Firstly, classification into normal (absence of abnormalities) or abnormal (presence of abnormalities) has been done, using 2D echo images, 3D Doppler images, and videographic images. Secondly, based on different types of regurgitation, namely, Mitral Regurgitation (MR), Aortic Regurgitation (AR), Tricuspid Regurgitation (TR), and a combination of the three types of regurgitation are classified using videographic echo images. Two deep-learning methodologies are used for these purposes, a Recurrent Neural Network (RNN) based methodology (Long Short Term Memory (LSTM)) and an Autoencoder based methodology (Variational AutoEncoder (VAE)). The use of videographic images distinguished this work from the existing work using SVM (Support Vector Machine) and also application of deep-learning methodologies is the first of many in this particular field. It was found that deep-learning methodologies perform better than SVM methodology in normal or abnormal classification. Overall, VAE performs better in 2D and 3D Doppler images (static images) while LSTM performs better in the case of videographic images.


Author(s):  
Misha Urooj Khan ◽  
Ayesha Farman ◽  
Asad Ur Rehman ◽  
Nida Israr ◽  
Muhammad Zulqarnain Haider Ali ◽  
...  

1995 ◽  
Vol 9 (3) ◽  
pp. 477-483 ◽  
Author(s):  
Hubert W. Carson ◽  
Lawrence W. Lass ◽  
Robert H. Callihan

Yellow hawkweed infests permanent upland pastures and forest meadows in northern Idaho. Conventional surveys to determine infestations of this weed are not practical. A charge coupled device with spectral filters mounted in an airplane was used to obtain digital images (1 m resolution) of flowering yellow hawkweed. Supervised classification of the digital images predicted more area infested by yellow hawkweed than did unsupervised classification. Where yellow hawkweed was the dominant ground cover species, infestations were detectable with high accuracy from digital images. Moderate yellow hawkweed infestation detection was unreliable, and areas having less than 20% yellow hawkweed cover were not detected.


2018 ◽  
Vol 3 (2) ◽  
pp. 33-39
Author(s):  
Andrey V. Pavlov ◽  
Andrey I. Rud ◽  
Maxim A. Zankevich

With the help of the automated system for the classification of carcasses of pigs, AutoFOM ultrasound have been processed 56682 carcasses of slaughter pigs with an average carcass weight of 94.3 kg. The mass and yield of muscle tissue from the main cuts in the carcass is shown. Correlation coefficients between the mass and the content of muscle tissue in the carcass and the main (premium) cuts (ham, neck, shoulder, belly, and loin) were studied. It is shown how the increase in the weight of each of the cuts affects the content of muscle tissue in the carcass and in the cut. For example, it was found that when the weight of the belly is increased by 10 kg (from 6 to 16 kg), the percentage of muscle tissue from carcass is reduced by 3.3% (from 54.5 to 51.8%), which is approximately 0.33% for 1 kg of additional weight of the belly. With an increase in the weight of the loin from 4 to 14 kg, the yield of muscle tissue from the carcass on the contrary increased by 11.6%, i.е. 1.16% for each additional kg of loin weight. A value (in absolute and relative units) of the main cuts is given. The conclusion is made about the prospects of using the obtained data in the creation of a specialized terminal line of pigs, characterized by an increased content of weight of premium cuts in the carcass.ContributionAll authors bear responsibility for the work and presented data. All authors made an equal contribution to the work. The authors were equally involved in writing the manuscript and bear the equal responsibility for plagiarism.Conflict of interestThe authors declare no conflict of interest.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012022
Author(s):  
F. Abdul Haris ◽  
M.Z.A. Ab Kadir ◽  
S. Sudin ◽  
D. Johari ◽  
J. Jasni ◽  
...  

Abstract Over the years, many studies have been conducted to measure and classify the lightning-generated electric field waveform for a better understanding of the lightning physics phenomenon. Through measurement and classification, the features of the negative lightning return strokes can be accessed and analysed. In most studies, the classification of negative lightning return strokes was performed using a conventional approach based on manual visual inspection. Nevertheless, this traditional method could compromise the accuracy of data analysis due to human error, which also required a longer processing time. Hence, this study developed an automated negative lightning return strokes classification system using MATLAB software. In this study, a total of 115 return strokes was recorded and classified automatically by using the developed system. The data comparison with the Tenaga Nasional Berhad Research (TNBR) lightning report showed a good agreement between the lightning signal detected from this study with those signals recorded from the report. Apart from that, the developed automated system was successfully classified the negative lightning return strokes which this parameter was also illustrated on Graphic User Interface (GUI). Thus, the proposed automatic system could offer a practical and reliable approach by reducing human error and the processing time while classifying the negative lightning return strokes.


Author(s):  
E. Grilli ◽  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using different features configurations.</p>


Sign in / Sign up

Export Citation Format

Share Document