scholarly journals Study the effect of thickness and annealing temperature on the Electrical Properties of CdTe thin Films

2008 ◽  
Vol 5 (3) ◽  
pp. 449-453
Author(s):  
Baghdad Science Journal

The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ala J. Al-Douri ◽  
F. Y. Al-Shakily ◽  
Abdalla A. Alnajjar ◽  
Maysoon F. A. Alias

Films of CdTe pure and doped with various atomic percentages of Al and Sb (0.5, 1.5 & 2.5) were prepared, and their electrical properties were investigated. The films were prepared by thermal evaporation on glass substrates at two substrate temperatures (Ts=RT& 423 K). The results showed that the conduction phenomena of all the investigated CdTe thin films on glass substrates are caused by two distinct mechanisms. Room temperature DC conductivity increases by a factor of four for undoped CdTe thin films asTsincreases and by 1-2 orders of magnitude with increasing dopant percentage of Al and Sb. In general, films doped with Sb are more efficient than Al-doped films. The activation energy (Ea2) decreases with increasingTsand dopant percentage for both Al and Sb. Undoped CdTe films deposited at RT are p-type convert to n-type with increasingTsand upon doping with Al at more than 0.5%. The carrier concentration decreases asTsincreases while it increases with increasing dopant percentage. Hall mobility decreases more than three times as Al increases whereas it increases about one order of magnitude with increasing Sb percentage in CdTe thin films deposited at 423 K and RT, respectively.


2019 ◽  
Vol 17 (41) ◽  
pp. 15-28
Author(s):  
Hussain. M. Selman

BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measurements for the thin films of BixSb2-xTe3, show that the grain size and the average surface roughness decreases with increasing of the percentage Bi for different thickness.


2004 ◽  
Vol 1 (2) ◽  
pp. 253-257
Author(s):  
Baghdad Science Journal

Thin films of ZnSe arc deposited on glass substrates by thermal evaporation in vacuum with different thickness (1000, 2700, 4000) A° temperature (293-373) °K are studies the electrical properties before and after annealing. The result show decrease D.0 conductivity and increasing the activation energy Eat.


2018 ◽  
Vol 15 (2) ◽  
pp. 192-197
Author(s):  
Baghdad Science Journal

Thin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


2020 ◽  
Vol 233 ◽  
pp. 05006
Author(s):  
A.F. Cardoso ◽  
A.A. Bassou ◽  
V.S. Amaral ◽  
J.R. Fernandes ◽  
P.B. Tavares

Thin films of the Lu-Fe-O system were deposited by aerosol assisted MOCVD on silica glass substrates. Hexagonal h-LuFeO3, garnet Lu3Fe5O12, perovskite o-LuFeO3 or hematite Fe2O3 phases were obtained, depending on the thermodynamic deposition conditions or post annealing temperature. Magnetic measurements confirm the ferromagnetic behaviour at room temperature of the thin films with garnet phase. An indirect bandgap of 1.78 eV was measured.


2014 ◽  
Vol 879 ◽  
pp. 175-179 ◽  
Author(s):  
Safaa I. Mohammed ◽  
Naser Mahmoud Ahmed ◽  
Y. Al-Douri ◽  
U. Hashim

Lead iodide (PbI2) thin films were successfully prepared by thermal evaporation method on a glass substrate at room temperature. The structural analysis of these films was done by XRD. The results revealed that the crystallite size increases when increasing the film thickness and annealing temperature. In addition, the preferred growth orientation was 001 for all the samples.


2019 ◽  
Vol 97 (11) ◽  
pp. 1182-1184
Author(s):  
Ugur Saglam ◽  
Sahin Yakut ◽  
Binnur Karabak ◽  
Deniz Bozoglu

Thalium selenide (TlSe), which has a lattice with tetragonal symmetry, is a member of the A3B6 semiconductor group. The structure of TlSe is defined as chains where atoms inside are bonded with an ionic-covalent bond. TlSe thin films were deposited by thermal evaporation under a high vacuum on glass substrates. The structure of TlSe thin films is amorphous with a tetragonal structure. The AC conductivity measurements were operated via the measurements of capacitance and dielectric dissipation (tanδ) at room temperature. AC conductivity values change between 10−11 and 10−6 S/cm at the low-frequency side with decreasing thickness. Two different conduction regions were observed with increasing frequency. The region observed at the low-frequency side can be attributed to the motion of a chain-like part of the lattice, while the region observed at the high-frequency side can be attributed to side groups.


Sign in / Sign up

Export Citation Format

Share Document