scholarly journals Deposition of Lu-Fe-O thin films on silica glass substrates by MOCVD

2020 ◽  
Vol 233 ◽  
pp. 05006
Author(s):  
A.F. Cardoso ◽  
A.A. Bassou ◽  
V.S. Amaral ◽  
J.R. Fernandes ◽  
P.B. Tavares

Thin films of the Lu-Fe-O system were deposited by aerosol assisted MOCVD on silica glass substrates. Hexagonal h-LuFeO3, garnet Lu3Fe5O12, perovskite o-LuFeO3 or hematite Fe2O3 phases were obtained, depending on the thermodynamic deposition conditions or post annealing temperature. Magnetic measurements confirm the ferromagnetic behaviour at room temperature of the thin films with garnet phase. An indirect bandgap of 1.78 eV was measured.

2012 ◽  
Vol 501 ◽  
pp. 236-241 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah ◽  
Ramadan E. Shaiboub

Thin films nanoparticles TbxY3-xFe5O12 (x=0.0, 1.0, 2.0) were prepared by the sol-gel process followed by annealing process at various annealing temperatures of 700° C, 800° C and 900° C in air for 2 h. The results obtained from X-ray diffractometer (XRD) show that the films annealed below 900°C exhibit peaks of garnet mixed with small amounts of YFeO3 and Fe2O3. Pure garnet phase has been detected in the films annealed at 900°C. Before annealing the films show amorphous structures. The particles sizes measurement using the field emission scanning electron microscope (FE-SEM) showed that the particles sizes increased as the annealing temperature increased. The magnetic properties were measured at room temperature using the vibrating sample magnetometer (VSM). The saturation magnetization (Ms) of the films also increased with the annealing temperature. However, different behavior of coercivity (Hc) has been observed as the annealing temperature was increased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


2009 ◽  
Vol 67 ◽  
pp. 65-70 ◽  
Author(s):  
Gaurav Shukla ◽  
Alika K. Khare

TiO2 is a widely studied material for many important applications in areas such as environmental purification, photocatalyst, gas sensors, cancer therapy and high effect solar cell. However, investigations demonstrated that the properties and applications of titanium oxide films depend upon the nature of the crystalline phases present in the films, i.e. anatase and rutile phases. We report on the pulsed laser deposition of high quality TiO2 thin films. Pulsed Laser deposition of TiO2 thin films were performed in different ambient viz. oxygen, argon and vacuum, using a second harmonic of Nd:YAG laser of 6 ns pulse width. These deposited films of TiO2 were further annealed for 5hrs in air at different temperatures. TiO2 thin films were characterized using x-ray diffraction, SEM, photoluminescence, transmittance and reflectance. We observed effect of annealing over structural, morphological and optical properties of TiO2 thin films. The anatase phase of as-deposited TiO2 thin films is found to change into rutile phase with increased annealing temperature. Increase in crystalline behaviour of thin films with post-annealing temperature is also observed. Surface morphology of TiO2 thin films is dependent upon ambient pressure and post- annealing temperature. TiO2 thin films are found to be optically transparent with very low reflectivity hence will be suitable for antireflection coating applications.


2013 ◽  
Vol 63 (12) ◽  
pp. 1328-1332
Author(s):  
D. Y. Lee ◽  
C. -W. Cho ◽  
S. H. Lee ◽  
J. W. Kim ◽  
H. K. Kim ◽  
...  

2005 ◽  
Vol 19 (15n17) ◽  
pp. 2804-2810 ◽  
Author(s):  
LEI MIAO ◽  
SAKAE TANEMURA ◽  
YASUHIKO HAYASHI ◽  
MASAKI TANEMURA ◽  
RONGPING WANG ◽  
...  

ZnO nanobamboos and nanowires with diameters of 10–30 nm and lengths of 2–4 μm have been prepared by laser ablation in vacuum with precisely controlled pressure, growth and post-annealing temperature. XRD results show the annealed sample is hexagonal ZnO . Low-magnified TEM observation reveals the annealed sample includes ZnO nanobamboos and nanowires. High resolution TEM image and electron diffraction pattern confirm that the structure of ZnO nanobamboo is regular stacking of Zn and O layers with high crystal quality. The growth direction is determined as along [001] direction (c axis). TEM observations confirm that the formation of bamboo-shape ZnO is due to the stacking fault and cleavage. The bundle of those stacking faults seems to be the origin of the black contrast at the nodes. The uniformity of chemical composition for the nanobamboos is identified by EDS profiles. A strong-narrow UV band centred at 390 nm and a weak-broad green band centred at 515 nm are observed at room temperature in the PL spectrum recorded from the annealed ZnO nanobamboos and nanowires.


Sign in / Sign up

Export Citation Format

Share Document