scholarly journals Calcareous nannofossil zonation and sequence stratigraphy of the Jurassic System, onshore Kuwait

GeoArabia ◽  
2015 ◽  
Vol 20 (4) ◽  
pp. 125-180
Author(s):  
Adi P. Kadar ◽  
Thomas De Keyser ◽  
Nilotpaul Neog ◽  
Khalaf A. Karam

ABSTRACT This paper presents the calcareous nannofossil zonation of the Middle and Upper Jurassic of onshore Kuwait and formalizes current stratigraphic nomenclature. It also interprets the positions of the Jurassic Arabian Plate maximum flooding surfaces (MFS J10 to J110 of Sharland et al., 2001) and sequence boundaries in Kuwait, and correlates them to those in central Saudi Arabia outcrops. This study integrates data from about 400 core samples from 11 wells representing a nearly complete Middle to Upper Jurassic stratigraphic succession. Forty-two nannofossil species were identified using optical microscope techniques. The assemblage contains Tethyan nannofossil markers, which allow application of the Jurassic Tethyan nannofossil biozones. Six zones and five subzones, ranging in age from Middle Aalenian to Kimmeridgian, are established using first and last occurrence events of diagnostic calcareous nannofossil species. A chronostratigraphy of the studied formations is presented, using the revised formal stratigraphic nomenclature. The Marrat Formation is barren of nannofossils. Based on previous studies it is dated as Late Sinemurian–Early Aalenian and contains Middle Toarcian MFS J10. The overlying Dhruma Formation is Middle or Late Aalenian (Zone NJT 8c) or older, to Late Bajocian (Subzone NJT 10a), and contains Lower Bajocian MFS J20. The overlying Sargelu Formation consists of the Late Bajocian (Subzone NJT 10b) Sargelu-Dhruma Transition, and mostly barren Sargelu Limestone in which we place Lower Bathonian MFS J30 near its base. The lower part of the overlying Najmah Formation consists of the Najmah Shale, which is subdivided into three subunits: (1) barren Najmah-Sargelu Transition, (2) Late Bathonian to Middle Callovian (lower Zone NJT 12) Lower Najmah Shale, and (3) Middle Callovian to Middle Oxfordian (upper Zone NJT 12 to NJT 13b) Upper Najmah Shale. Middle Callovian MFS J40 and Middle Oxfordian MFS J50 are positioned near the base and top of the Upper Najmah Shale. The upper part of the Najmah Formation is represented by the Late Oxfordian (Subzone NJT 13b) Najmah Limestone, and is overlain by the Kimmeridgian (Zone NJT 14) Jubaila Formation. Early Kimmeridgian MFS J60 and Late Kimmeridgian MFS J70 are positioned near the base and top of the Jubaila Formation. The positions of Late Jurassic MFS J80, J90 and J100 are not constrained by our biostratigraphic data and are positioned in the Gotnia Formation. The Upper Tithonian MFS J110 and the Jurassic/Cretaceous boundary are positioned in the Makhul Formation.

1966 ◽  
Vol S7-VIII (4) ◽  
pp. 497-502 ◽  
Author(s):  
Jean Delfaud

Abstract In the Mont Sacon series (central French Pyrenees) the stratigraphic succession from the Jurassic to the Neocomian (lower Cretaceous) can be observed. Four groups are distinguished: the Liassic, the middle and upper Jurassic, the terminal Jurassic, and the Neocomian. By means of the microfauna, these strata are correlated with sequences in the Pyrenees and the Aquitaine basin. Several important sedimentary breaks--in the lower Bathonian, Oxfordian, Sequanian, and the base of the upper Portlandian (Jurassic), and the basal Valanginian and upper Neocomian (Cretaceous)--are evidence of changes in sedimentary environment at least partly due to movements of the basement.


1977 ◽  
Vol 8 ◽  
pp. 45-49
Author(s):  
Richard J. Hodgkinson ◽  
Christopher D. Walley

Carbonate and clastic sediments of Jurassic and Cretaceous age are exposed along the fault-scarp of Djebel Nefusa in north-western Libya. Previous geological investigations have been mainly restricted to the eastern sector of the scarp. Recent studies by the authors in the western sector of Djebel Nefusa and on equivalent sediments in southern Tunisia have allowed the first regional interpretation of these rocks.The area studied lies geographically and geologically at the edge of the Saharan Platform, a large cratonic block, composed of rocks of Precambrian-Palaeozoic age. To the north and east lies a downfaulted sedimentary basin (Gabes-Sabratha Basin) containing a large thickness of Mesozoic sediments. The location of the sections measured along Djebel Nefusa are depicted in Fig.1.The stratigraphic nomenclature of the rock succession of Djebel Nefusa was first established in the east and continued laterally towards the west by later workers. Difficulties in the application of this nomenclature are presented by the recognition of facies changes previously overlooked by earlier investigators. However, as a framework for understanding these changes and the sedimentary processes which caused them, the stratigraphy erected by Magnier (1963) is adopted.


1996 ◽  
Vol 33 (3) ◽  
pp. 418-428 ◽  
Author(s):  
Carlos M. González-León ◽  
David G. Taylor ◽  
George D. Stanley Jr

The Antimonio Formation furnishes a record of sedimentation across the Triassic–Jurassic system boundary and is one of a few stratigraphic sections globally that preserves latest Triassic to Hettangian ammonoids in stratigraphic succession. The boundary falls near the middle of the formation, within a 155 m thick stratigraphic section, which is divided into five distinct sedimentary packages. The laminated shales and siltstones in the middle of package 4 represent deposition in an anoxic or disaerobic setting. Although shales of package 4 themselves are poorly fossiliferous, they are bounded below and above by Triassic and Jurassic biotas, respectively. The Triassic–Jurassic system boundary should fall within or stratigraphically close to the laminated beds. The transgressive–regressive signature from the Antimonio Formation corresponds closely to that of the Gabbs and Sunrise formations in Nevada and jointly shows eustatic regressive events at or near the beginning of the latest Triassic Crickmayi Zone and another near the top of the Hettangian. The beds from package 4 indicate a transgression closely associated with the Triassic–Jurassic system boundary.


1965 ◽  
Vol S7-VII (5) ◽  
pp. 769-772
Author(s):  
Philippe Artru

Abstract Middle Jurassic (Bathonian) and upper Jurassic (Callovian-lower Argovian) dark-colored shales and marls of Hautes-Alpes, France, locally known as the 'terres noires,' contain abundant microcrystalline dolomite in the lower (Bathonian) part. Mixed detrital sediments and carbonates in the lower part contrast with essentially terrigenous strata in the upper (Callovian-Oxfordian) part. The Bathonian depositional basin was isolated by sills and probably contained magnesium-rich waters of low pH; at the beginning of the upper Jurassic the basin became more open and dolomite formation ceased.


2002 ◽  
Vol 21 (2) ◽  
pp. 115-130 ◽  
Author(s):  
M. I. Wakefield ◽  
E. Monteil

Abstract. Integrated analysis of foraminiferal and palynological data from the Duljan-1 well, Central Indus Basin, Pakistan, is used to identify critical surfaces (candidate sequence boundaries (SB) and maximum flooding surfaces (MFS)) and construct a biosequence stratigraphical framework. Within the Barremian through Bartonian–Priabonian? succession 15 depositional sequences have been recognized, each with a candidate MFS. These biosequences are shown to equate with the local lithostratigraphy and tentatively with the ‘global’ large-scale depositional cycles of Haq et al. (1987). Detailed dating has enabled seven candidate MFS to be tentatively equated with MFS identified on the nearby Arabian plate (Sharland et al., 2001). A combination of detailed age dating and palaeobathymetric determinations indicates significant basin uplift and erosion at end Cretaceous and end Eocene times, the latter coinciding with closure of Neo-Tethys. Smaller-scale unconformities are also noted. Multi-disciplinary palaeoenvironmental interpretations enable recognition of detailed changes in water mass conditions. Palynological data suggest these changes result from variations in terrestrial/freshwater input, though evidence of periodically low oxygen bottom water conditions/shallowing of the oxygen minimum zone, possibly ‘Oceanic Anoxic Event-2’ (OAE-2; late Cenomanian–Turonian) is suggested as a further control.


2017 ◽  
Vol 91 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Timothy A.M. Ewin ◽  
Ben Thuy

AbstractThree new ophiuran species, Enakomusium whymanae n. sp., Aspidophiura? seren n. sp., and Ophiotitanos smithi n. sp., and an unnamed specimen assignable to the genus Dermocoma are described from the Callovian to Oxfordian Oxford Clay Formation of Great Britain. These determinations are based on new finds and a critical reassessment of historic specimens. The Oxford Clay ophiuroids represent two loose assemblages, one from the middle Callovian Peterborough Member and the other from the lower Oxfordian Weymouth Member. Both assemblages accord well with coeval midshelf mud bottom ophiuroid communities in terms of taxonomic composition and relative abundance of taxa. The British Oxford Clay ophiuroids are particularly significant as they are one of the rare instances where multiple species are represented, almost exclusively, by exceptionally preserved articulated skeletons. This provides an important window into the understanding of mid-Upper Jurassic ophiuroid paleobiology.


2013 ◽  
Vol 734-737 ◽  
pp. 366-372
Author(s):  
Wei Yin

The Afghan-Tajik Basin is an intermontane depression between the mountain ranges of Gissar and Pamirs, and Jurassic system and Tertiary system are rich in large oil & gas resources. In order to assure sustainable supply of oil & gas from Central Asia, we deeply researched hydrocarbon geology characteristics and resource potentials. The basin belongs to paralic sedimentary environment, and develops 3 sedimentary strata: Jurassic, Cretaceous, and Tertiary. Afghan-Tajik Basin develops 3 main source rocks including clastic rocks of Jurassic, carbonate rocks of Cretaceous and mudstone rocks of Eocene. The basin develops 2 plays: Jurassic-Cretaceous play is gas containing one, and Tertiary play is oil containing one. Plaster stone and salt rock of upper Jurassic are regional cap rocks of Jurassic-Cretaceous gas pool, and creaming mudstone and muddy limestone of Cretaceous and Tertiary are regional or partial cap rocks. Migration and accumulation of hydrocarbon occur in the late Cretaceous and early Pliocene epoch. Afghan-Tajik Basin has larger exploration potentials, and residual resources are 2.4¡Á108t. The potential zones are as follows, south part of basin, oil-gas structures of post-salt, reef limestone of pre-salt, and litho-stratigraphic traps.


GeoArabia ◽  
2007 ◽  
Vol 12 (4) ◽  
pp. 101-130 ◽  
Author(s):  
Michael D. Simmons ◽  
Peter R. Sharland ◽  
David M. Casey ◽  
Roger B. Davies ◽  
Owen E. Sutcliffe

ABSTRACT The ability to recognise and correlate third-order depositional sequences across Arabia and between Arabia and other plates indicates that these sequences are driven by synchronous eustatic sea-level change. This is of value in providing guidance for the definitions of stages, which are the fundamental units of chronostratigraphy. Each Phanerozoic stage requires a Global Stratotype Section and Point (GSSP), which is a location and specific bedding plane where the base of each stage is defined. This definition is tied to an event in the rock record useful for correlation. Progress in defining GSSPs has been delayed because of difficulties in choosing the most appropriate event and section to relate to a definition. It is recommended here that stage boundaries be related to correlative conformities of sequence boundaries. This closely links chronostratigraphy with sequence stratigraphy and honours the original concepts upon which many stages were first described in the 19th Century.


GeoArabia ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 145-172
Author(s):  
Sherif Farouk ◽  
Mahmoud Faris ◽  
Fayez Ahmad ◽  
John H. Powell

ABSTRACT The first detailed calcareous nannofossil and planktonic foraminiferal biostratigraphic and integrated lithofacies analyses of the Eocene–Oligocene transition at the Qa’ Faydat ad Dahikiya area in the Eastern Desert of Jordan, on the border with Saudi Arabia, is presented. Three calcareous nannofossil zones namely: Discoaster saipanensis (NP17), Chiasmolithus oamaruensis (NP18) and Ericsonia subdisticha (NP21), and three planktonic foraminiferal zones: upper part of Truncorotaloides rohri (E13), Globigerinatheka semiinvoluta (E14) and Cassigerinella chipolensis/Pseudohastigerina micra (O1) are identified. Calcareous nannofossil bioevents recorded in the present study show numerous discrepancies with the Standard biostratigraphic zonal schemes to detect the Middle/Upper Eocene boundary (e.g. the highest occurrences (HOs) of Chiasmolithus solitus, C. grandis, and lowest occurrences (LOs) of C. oamaruensis, Isthmolithus recurvus are not considered reliable markers for global correlation). The Middle/Upper Eocene boundary occurs in the current study above the extinctions of large muricate planktonic foraminifera (large Acarinina and Truncorotaloides spp.) which coincide within the equivalent calcareous nannofossil NP18 Zone. These microplanktonic bioevents seem to constitute more reliable markers for the base of the Upper Eocene in different provinces. The uppermost portion of the Middle Eocene is characterized by an observed drop in faunal content and, most likely, primarily denotes the effect of the major fall in eustatic sea level. A major unconformity (disconformity) marked by a mineralized hardground representing a lowstand is recorded in the present study at the Eocene–Oligocene transition that reveals an unexpected ca. 2.1 Myr duration, separating Eocene (NP18/E14 zones) from Oligocene (NP21/O1 zones). Furthermore, the microfossil turnover associated with a rapid decline of the microfossil assemblages shows a distinct drop in diversity and abundance towards the Eocene/Oligocene unconformity and is associated with a sharp lithological break marked, at the base, by a mineralized hardground representing a major sequence boundary. These bioevents, depositional sequences and the depositional hiatus correlate well with different parts of the Arabian and African plates, but the magnitude of the faunal break differs from place to place as a result of intraplate deformation during the regional Oligocene regression of Neo-Tethys on the northern Arabian Plate. The presence of the Lower Oligocene shallow-marine calcareous planktonic assemblages in the study area indicate that communication between the eastern and western provinces of the western Neo-Tethys region still existed at this time.


Sign in / Sign up

Export Citation Format

Share Document