Etude tectonique de la region sud de la Nerthe

1966 ◽  
Vol S7-VIII (5) ◽  
pp. 712-726 ◽  
Author(s):  
Claude Froget ◽  
Gerard Guieu ◽  
Max Robert Roux

Abstract Stratigraphic and tectonic study of the southern Nerthe [Mediterranean coast of France] is based on a sketch map at 1:5,000. The most prominent feature of the region is the presence of the middle and upper Cretaceous, which most commonly forms depressions (B) arranged in synclines or eroded and buried anticlines: to the north under the inverted edge of an anticline (A); to the south, under the front of an overthrust (C). The structure and behavior of units (A), (B), and (C) are defined. Units (A) and (C) had a tendency to be displaced in opposite directions, after sinking of the medial unit (B), becoming somewhat mutually overlapped (the Grand-Vallat). The major fault placing these units in contact is transformed toward the Graffian [highlands] into a complex network of fractures gradually connecting with the Triassic axis of the Rove. Relations with adjacent tectonic units are considered (Etoile overthrust, Marseilles basin). A chronology of the different movements is proposed, from the upper Cretaceous to the Miocene, based on a general examination of the folded zone north of Marseilles.

2006 ◽  
Vol 6 (1) ◽  
pp. 105-121 ◽  
Author(s):  
Margalit Finkelberg

AbstractUntil recently it has generally been taken for granted that cultural contacts between the Aegean and the Near East invariably proceeded in one direction, from East to West. It seems, however, that recent archaeological discoveries are about to change this picture. As these discoveries demonstrate, with the collapse of the Mycenaean civilization some Bronze Age populations of Greece migrated to the Levant and settled along the Mediterranean coast from Tarsos in the north to Ashkelon in the south, eventually to be assimilated into the native population. This fact suggests a much more complex network of relations between the Aegean and the Near East than the simple one-sided cultural dependence which has usually been postulated.


2021 ◽  

As one of the most promising plays, the Pre-Tertiary basement play holds a significant contribution to the latest success of exploration efforts in the South Sumatra Basin, which then includes the South Jambi B Block. Yet, the natures of the Pre-Tertiary unit in this block remains unsolved. Lithology variability, spatial irregularity, genetic ambiguity, and different reservoir characteristic are indeterminate subjects in the block are the main focus here. The ultimate goals of this study are to better characterize the unit and gain more understanding in calibrating the remaining potential. Based on this study, The Pre-Tertiary units are mainly originated from layered marine-deltaic sedimentary parent rocks with carbonate, intruded by spotty granite where the concentration of each parent rocks varies at the north, the middle, and southern part. Secondly, both lithology heterogeneity and natural fracture density create distinctive reservoir deliverability at each structure. The storage concept is an essential function of natural fracture intensity and diversity, supported by matrix porosity that varies across a different succession of lithology. Lastly, this study observes that major fault orientation is essential in constructing the fracture network. Evidence from several image logs across the study area concludes that most of the interpreted fractures are oriented subparallel to the major faults. The northern belt area is relatively affected by NW-SE Neogene structure, where the southern area is recognized to be affected by both Neogene compression and pre-existing Paleogene structure.


1962 ◽  
Vol S7-IV (1) ◽  
pp. 87-91 ◽  
Author(s):  
Fernand Touraine

Abstract Results of a stratigraphic and tectonic study of the Mourotte syncline, Provence, France, divide the structure into three parts. The northern part is composed of Hauterivian littoral beds containing Danian dinosaur eggs. The Danian limestone-sandstone series disappears at La Neuve while the marly upper Danian beds continue to the extreme northern limit of the syncline. In the central part the Hauterivian wedges out, and toward its southern limit the substratum is entirely upper Jurassic. In the southern part, the Danian limestones are only visible on the northeast border. Bird eggs collected in the area assign the southern part of the syncline to the Thanetian. Overturning is less noticeable in the north, becoming acute toward the south where the syncline is tightly overturned.


The Aquitaine Basin, situated in southwest France, with an area of about 60 000 km 2 , has the form of a triangle which opens towards the Atlantic (Bay of Biscay) and is limited to the north by the Hercynian basement of Brittany and the Massif Central, and to the south by the Pyrenean Tertiary orogenic belt. Beneath the Tertiary sequence (2 km thick, and which outcrops over much of the basin) a Mesozoic series, up to 10 km thick, rests generally on a tectonized Hercynian basement but locally it covers narrow (NW-SE-trending) post-orogenic trenches of Stephano-Permian age. The Mesozoic history can be subdivided into four major structural-sedimentary episodes: (1) during a Triassic taphrogenic phase a continental-evaporitic complex developed with associated basic magmatism; (2) throughout the Jurassic, a vast lagoonal platform developed, initially (Lower Lias) as a thick evaporitic sequence followed by a uniform shale-carbonate unit, indicating a relative structural stability; (3) the end of the Jurassic and the Lower Cretaceous saw a fragmentation of this platform, due to an interplay between the Iberian and European tectonic plates, resulting in an ensemble of strongly subsident sub-basins; (4) during the Upper Cretaceous and until the end of the Neogene, the evolution of the Aquitaine Basin was influenced by the Pyrenean orogenic phase, with the development, towards the south, of a trench infilled by flysch which, from the Upper Eocene, is succeeded by a thick post-orogenic molasse complex. The main hydrocarbon objectives in the basin are situated in the Jurassic platform (e.g. the Lacq giant gas field) and the Cretaceous sub-basins (e.g. the Cazaux and Parentis oil fields). To date, production has been about 4 x 10 7 m 3 of oil, and about 15 x 10 10 m 3 of gas since the first gas discovery (St Marcet) in 1939.


1927 ◽  
Vol 17 (4) ◽  
pp. 405-409
Author(s):  
L. D. Cleare

The observations herein recorded were carried out on a portion of the foreshore and of the low-lying front-lands in the vicinity of Georgetown, British Guiana, during the months of January, 1925, and July and August, 1926. The results obtained appear to be of sufficient interest to warrant their being placed on record as throwing further light on the breeding-habits of two important mosquitos of this Colony, namely, Anopheles tarsimaculatus, Goeldi, and Aëdes taeniorhynchus, Wied.The principal area in which the investigations were carried out is situated to the north of Kitty Village outside of the Sea Wall and is bounded on the south by that wall, on the west by the Kitty Groyne, and on the east by another groyne (Case Groyne) erected a few years ago as part of the sea-defences. The area measures roughly from east to west about 700 yards and from north to south about 200 yards at its greatest width, and about 60 yards at its narrowest part, these being situated at the western and eastern boundaries respectively. The accompanying sketch-map gives a general plan of the area. The places from which mosquito larvae were collected are indicated on the plan, Anopheles by black spots, Aëdes by concentric rings.


1966 ◽  
Vol S7-VIII (7) ◽  
pp. 938-945
Author(s):  
Jean Aubouin ◽  
Jean Chorowicz ◽  
Nicole Le Dore

Abstract The Encauron Jurassic hills are allochthonous on the upper Cretaceous Etienne syncline which borders the Lare anticline on the north. The Lagets hills are autochthonous--relatively--and represent the north flank of the Etienne syncline and the south flank of the Huveaune Triassic belt. Superposed tectonic phases are emphasized, being represented by three successive groups of structures: overthrusts, folds, fractures. After an account of the historical geology, the Encauron hills are compared with the Sainte Baume series.


2019 ◽  
Vol 157 (10) ◽  
pp. 1658-1692 ◽  
Author(s):  
H. Nøhr-Hansen ◽  
S. Piasecki ◽  
P. Alsen

AbstractA palynostratigraphic zonation is for the first time established for the entire Cretaceous succession in NE Greenland from Traill Ø in the south to Store Koldewey in the north (72–76.5° N). The zonation is based on samples from three cores and more than 100 outcrop sections. The zonation is calibrated to an updated ammonite zonation from the area and to palynozonations from the northern North Sea, Norwegian Sea and Barents Sea areas. The palynozonation is primarily based on dinoflagellate cyst and accessory pollen. The Cretaceous succession is divided into 15 palynozones: seven Lower Cretaceous zones and eight Upper Cretaceous zones. The two lowermost zones are new. The following five (Lower Cretaceous) zones have already been described. Two of the Upper Cretaceous zones are new. The zones have been subdivided into 20 subzones, 11 of which have been described previously and one of which has been revised/redefined. Nine subzones (Upper Cretaceous) are new. More than 100 stratigraphical events representing more than 70 stratigraphic levels have been recognized and presented in an event-stratigraphic scheme.


2017 ◽  
Vol 67 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Karl-Armin Tröger

Abstract The Upper Cretaceous of the Elbe Valley in Saxony and the erosion outliers west of it mark an Upper Cretaceous NW-SE-running strait between the Westsudetic Island in the NE and the Mid-European Island to the west. This street connected the NW-German-Polish Basin in the north and the Bohemian Cretaceous Basin (and adjacent regions of the Tethys) in the south. However, post-Cretaceous erosion north of Meißen removed any Upper Cretaceous deposits but erosion outliers at Siebenlehn and especially north of the Forest of Tharandt proof the presence of a marly through silty belt in this area. Three transgressions (base of uppermost Lower to Middle Cenomanian, base of Upper Cenomanian and base of the geslinianum Zone in the mid-Upper Cenomanian) have taken place. The sedimentation was influenced by the topography of the mentioned islands and by movements at structural lines in the Proterozoic and Palaeozoic basement. During the early Late Cenomanian, a marly-silty sedimentation (Mobschatz Formation) in the north existed besides sandy sedimentation in the south (Oberhäslich Formation). The transgression at the base of the geslinianum Zone caused the final submergence of island chains between Meißen, Dresden and Pirna, and a litho- and biofacies bound to cliffs and submarine swells formed. A silty-marly lithofacies, a mixed sandy-silty lithofacies (Dölzschen Formation) and a sandy lithofacies in the south (Sächsisches Elbsandsteingebirge) co-existed during the latest Cenomanian. The first mentioned biofacies yields a rich fauna mainly consisting of oysters, pectinids, rudists, and near-shore gastropods accompanied by echinids and, in some cliffs, teeth of sharks. The Pennrich fauna (Häntzschel 1933; Uhlig 1941) especially consists of the very common serpulids Pyrgopolon (P.) septemsulcata and Glomerula lombricus (formerly Hepteris septemsulcata and G. gordialis).


2002 ◽  
Vol 173 (6) ◽  
pp. 523-532 ◽  
Author(s):  
Bernard Peybernès ◽  
Marie-José Fondecave-Wallez ◽  
Pierre-Jean Combes

Abstract Recently, have been evidenced in central/eastern French Pyrenees sub-marine polygenic breccias (Comus/Baixas Breccias), assigned to Upper Danian-Lower Selandian (P1c-P3) by means of planktonic foraminifera found either within their matrix, or within associated microrhythmic hemipelagites. These ante-Upper Eocene breccias, which are posterior to the HT-LP « Pyrenean » metamorphism (Mid.-Cretaceous in age and characterized by dipyre-bearing marbles and hornfelses) and to the Upper to Uppermost Cretaceous foldings, are only restricted to the Cretaceous orogenic axis of the range [Internal Metamorphic Zone (IMZ) and North-Pyrenean Zone (NPZ)]. They are dated in about 20 layers known from Mediterranean coast to Garonne valley. The breccias define in this part of Pyrenees a wide and long (more than 200 km) W-E trough (subdivided into several meridian palaeocanyons) inherited from former karstic topographies and separated by mountains with a steep topography, flanked to the South and the North of continental areas (covered by « Vitrollian » fluvio-lacustrine deposits). It was important to evidence if this marine breccia-filled « trough », Palaeocene in age, could extend westwards, West of Garonne, in Comminges/Barousse and Bigorre, where, laterally, the « Vitrollian » continental areas are replaced by outer-shelf marine sediments (clinoform carbonates), both covering the Sub-Pyrenean Zone (SPZ) and the High Primary Range (HPR) (Gavarnie-Mont-Perdu thrust sheet). In fact, the presence of those breccias has been already suggested (but without micropalaeontologic arguments) by Mattauer [in Choukroune, 1969 and 1976] in the Lourdes area (Bigorre). The topic of this paper is to characterize and to assign to the lower part of Palaeocene (63-59 Ma interval) several significant outcrops (St-Béat, Bramevaque/Troubat/Gembrié, Lortet, Medous/Bagnères-de-Bigorre and Lourdes/Pibeste) of these marine breccias (some of them previously used as black/yellow marbles called « Brèche romaine de St-Béat », « Portor des Pyrénées » or « Marbres de Medous ») recently identified from Garonne to Gave-de-Pau (fig. 1). Although quite poor in argillaceous hemipelagites, most of the breccias (which contain Mesozoic clasts) are now well dated by sections of « globigerinids » (= superfamily of Globerinacea) observed within their matrix. Other marine Palaeocene breccias also exist, more to the South (col de Gembre) along segments of the North-Pyrenean Fault, but they only rework Palaeozoic clasts. The « globigerinid » assemblage checked within all the Palaeocene breccias of Comminges/Bigorre includes, as more to the east, the following taxa: Globanomalina compressa, Gl. ehrenbergi, Gl. imitata, Parasubbotina varianta, P. variospira, Igorina pusilla, Morozovella angulata, M. praeangulata, Praemurica spiralis, Pr. inconstans and Woodringina hornestownensis. This assemblage is also laterally present within the marine carbonate sequences of the SPZ – HCR cover (« Lasseube Limestones » from the Nay/Pont Labau area, « Globigerinid-bearing Limestones » from the Gavarnie-Mont-Perdu thrust sheet), regions which are peripheric to the Pyrenean Lower/Mid. Cretaceous orogen (IMZ, NPZ) because exempt of major angular unconformity between Maastrichtian and Danian marine deposits (only a short gap of Lower/Lowermost Danian underlines the K/T boundary). On the contrary, the herein studied regions, belonging to this orogen, are characterized by a clear unconformity (both angular and cartographic) along a well-marked ravining surface inherited from erosional processes and karstification. The substratum of these breccias is strongly folded, cleaved and sometimes metamorphic and its younger formation seems to be Mid.– Cretaceous in age at least. Thus, it is very probable that the ante-Palaeocene unconformity seals compressional/transpressional structures (followed by emersions) assigned to the Uppermost Cretaceous phase (palinspastic transect, fig. 5). Danian/Selandian marine breccias and their already folded Mesozoic substratum are later tectonically reactived together by the « Pyrenean » compressions, Upper Eocene in age. If the elements of these breccias sometimes correspond to marbles induced by the Mid.-Cretaceous thermometamorphism (as around the famous « Etang de Lherz », more to the East, where lherzolites are also reworked in similar Danian/Selandian breccias), their matrix locally contain neogenic phyllites (never dipyre !) which could be related to a light (hydrothermal ?) post-breccia metamorphism. The clasts are generally angular, showing a very short transport from emerged steep topographies separating the different elementary canyons of the trough. The last problem is to determine the eventual westwards extension in the Bearn and Basque Pyrenees (fig. 6), particularly in the « Chaînons Béarnais » Zone which belonged to the North-Iberian palaeomargin (Iberian Plate) of the future range during Lower/Mid.-Cretaceous times. At this first level of micropalaeontologic investigations, it seems that several breccias (Lauriolle, Etchebar, Bosmendiette etc …), previously interpreted by several authors (synthesis in James and Canerot [1999]) as Aptian and « diapiric » (collapse) breccias, should be assigned to marine Palaeocene deposits because containing (in their matrix and associated hemipelagites) Danian-Selandian planktonic foraminifera similar to the Comminges/Bigorre ones.


1963 ◽  
Vol S7-V (1) ◽  
pp. 70-79 ◽  
Author(s):  
Michel Durand Delga ◽  
Michel Villiaumey

Abstract The allochthonous Musa group of upper Triassic shale, Jurassic limestone, dolomite, marl, and radiolarite, and Cretaceous to Paleogene clastics lies upon Senonian (upper Cretaceous) autochthonous marl and shale of the Tangier massif at the north end of the Rif mountains in Morocco. The group more closely resembles the formations of the Gibraltar area than nearby formations to the south in Morocco. The significance of the Beliounis flysch, believed to be of Cretaceous to Oligocene age, is unexplained. It may be a remnant of the cover of the Musa group although presence of other facies of the same age in the area contradicts this possibility.


Sign in / Sign up

Export Citation Format

Share Document