scholarly journals The influence of auditory information on performance in table tennis

2020 ◽  
Vol 45 ◽  
pp. 62-76
Author(s):  
Katharina Petri ◽  
Timon Schmidt ◽  
Kerstin Witte

It is well-known that visual information is essential for anticipation in table tennis but it not clarified whether auditory cues are also used. Therefore, we performed two in-situ studies, in which novices (study A) and advanced players (study B) responded to strokes of a real opponent or a ball machine by returning with forehand counters (study A) and forehand top spins (study B) to a given target area on the table. We assessed the parameters “hit quality” and “subjective effort”. In study A, we provided four conditions: normal, a noise-cancelling headphone and earplugs to dampen auditory information, other noise-cancelling headphones and earplugs to remove almost all environmental sounds, and the same head-phones with additional bright noise to remove all sounds. In study B, we performed three tests (irregular play and regular play with an opponent and response to regular balls of a ball machine) under two conditions: normal and noise-cancelling headphones with the additional bright noise. In both studies, no significant differences between all conditions for “hit quality” and “subjective effort” (all p>0.05) were found. We conclude that auditory information, as well as their volume, have no influence on the hit quality in table tennis for novices and advanced players.

2016 ◽  
Vol 41 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Seoung Hoon Park ◽  
Seonjin Kim ◽  
MinHyuk Kwon ◽  
Evangelos A. Christou

Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.


Author(s):  
J. V. Maskowitz ◽  
W. E. Rhoden ◽  
D. R. Kitchen ◽  
R. E. Omlor ◽  
P. F. Lloyd

The fabrication of the aluminum bridge test vehicle for use in the crystallographic studies of electromigration involves several photolithographic processes, some common, while others quite unique. It is most important to start with a clean wafer of known orientation. The wafers used are 7 mil thick boron doped silicon. The diameter of the wafer is 1.5 inches with a resistivity of 10-20 ohm-cm. The crystallographic orientation is (111).Initial attempts were made to both drill and laser holes in the silicon wafers then back fill with photoresist or mounting wax. A diamond tipped dentist burr was used to successfully drill holes in the wafer. This proved unacceptable in that the perimeter of the hole was cracked and chipped. Additionally, the minimum size hole realizable was > 300 μm. The drilled holes could not be arrayed on the wafer to any extent because the wafer would not stand up to the stress of multiple drilling.


2020 ◽  
Author(s):  
David Harris ◽  
Mark Wilson ◽  
Tim Holmes ◽  
Toby de Burgh ◽  
Samuel James Vine

Head-mounted eye tracking has been fundamental for developing an understanding of sporting expertise, as the way in which performers sample visual information from the environment is a major determinant of successful performance. There is, however, a long running tension between the desire to study realistic, in-situ gaze behaviour and the difficulties of acquiring accurate ocular measurements in dynamic and fast-moving sporting tasks. Here, we describe how immersive technologies, such as virtual reality, offer an increasingly compelling approach for conducting eye movement research in sport. The possibility of studying gaze behaviour in representative and realistic environments, but with high levels of experimental control, could enable significant strides forward for eye tracking in sport and improve understanding of how eye movements underpin sporting skills. By providing a rationale for virtual reality as an optimal environment for eye tracking research, as well as outlining practical considerations related to hardware, software and data analysis, we hope to guide researchers and practitioners in the use of this approach.


2021 ◽  
Vol 11 (2) ◽  
pp. 620
Author(s):  
Magdalena Dyda ◽  
Agnieszka Laudy ◽  
Przemyslaw Decewicz ◽  
Krzysztof Romaniuk ◽  
Martyna Ciezkowska ◽  
...  

The aim of the presented investigation was to describe seasonal changes of microbial community composition in situ in different biocenoses on historical sandstone of the Northern Pergola in the Museum of King John III’s Palace at Wilanow (Poland). The microbial biodiversity was analyzed by the application of Illumina-based next-generation sequencing methods. The metabarcoding analysis allowed for detecting lichenized fungi taxa with the clear domination of two genera: Lecania and Rhinocladiella. It was also observed that, during winter, the richness of fungal communities increased in the biocenoses dominated by lichens and mosses. The metabarcoding analysis showed 34 bacterial genera, with a clear domination of Sphingomonas spp. across almost all biocenoses. Acidophilic bacteria from Acidobacteriaceae and Acetobacteraceae families were also identified, and the results showed that a significant number of bacterial strains isolated during the summer displayed the ability to acidification in contrast to strains isolated in winter, when a large number of isolates displayed alkalizing activity. Other bacteria capable of nitrogen fixation and hydrocarbon utilization (including aromatic hydrocarbons) as well as halophilic microorganisms were also found. The diversity of organisms in the biofilm ensures its stability throughout the year despite the differences recorded between winter and summer.


Sign in / Sign up

Export Citation Format

Share Document