scholarly journals Selenium Species Determination in Selenium-Enriched Pumpkin (Cucurbita pepo L.) Seeds by HPLC-UV-HG-AFS

2005 ◽  
Vol 21 (12) ◽  
pp. 1501-1504 ◽  
Author(s):  
Polona SMRKOLJ ◽  
Vekoslava STIBILJ ◽  
Ivan KREFT ◽  
Emese KAPOLNA
2018 ◽  
Vol 111 ◽  
pp. 621-630 ◽  
Author(s):  
Jorge Moreda-Piñeiro ◽  
Joel Sánchez-Piñero ◽  
Adriana Mañana-López ◽  
Isabel Turnes-Carou ◽  
Elia Alonso-Rodríguez ◽  
...  

Author(s):  
Ammar Hameed Madi ◽  
Jawad A. Kamal Al-Shibani

This study was conducted to investigate the effect of bacterial bio-fertilization A. chroococcum and P. putide and four levels of compost (0, 1, 2, 3) tons.h-1 on the leaves content of N.P.K elements. The experiment was carried out in one of the greenhouses of the College of Agriculture - University of Al-Qadisiyah during fall season 2018-2019. It designed in accordance with the Randomized Complete Block Design (RCBD) with three replicates in sandy loam soil. The means of treatments were compared with the least significant difference (LSD) at (5)% probability level. The results present that the treatments of A. chroococcum, P. putide and compost at (3) tons.kg-1 significantly increases the leaves content of K.P.K compared to all other treatments in the flowering stage (4.970, 0.5000, and 4.930) mg.kg-1, respectively. This treatment was followed by the effect of the treatment of A. chroococcum and compost at (3) tons.kg-1, which increases the values of all traits except the leaf content of (P). Bio-fertilizer with P. putide + A. chroococcum significantly increases the leaves' content of P.


2020 ◽  
Vol 57 (2) ◽  
pp. 85-93
Author(s):  
B Sinha ◽  
K Bhattacharyya

The purpose of the present study was to assess arsenic (As) speciation in rice from West Bengal, India, in order to improve understanding of the health risk posed by arsenic in Indian rice. Rice is a potentially important route of human exposure to arsenic, especially in populations with rice-based diets. However, arsenic toxicity varies greatly with species. Determination of arsenic (As) species in rice is necessary because inorganic As species are more toxic than organic As. Total arsenic was determined by inductively coupled plasma mass spectrometry; arsenite, arsenate, monomethylarsonic acid, and dimethyarsinic acid were quantified by high-performance liquid chromatography- inductively coupled plasma mass spectrometry. The analysis of a rice flour certified reference material (SRM-1568-a) were evaluated for quality assurance. The use of 2M TFA for extraction with an isocratic mobile phase was optimized for extraction and employed for arsenic speciation in rice. The extraction method showed a high recovery of arsenic. Most of the As species in rice were noticed to be inorganic [Arsenite (As-III), Arsenate As-V]. It appeared very clear from the present study that inorganic arsenic shared maximum arsenic load in rice straw while in grains it is considerably low. As species recovered from rice grain and straw are principally As-III and As-V with a little share of DMA and almost non-detectable MMA and As-B. The order of As species in rice grain revealed in this study were As-III (54.5-65.4 %)>As-V(21.2-28.3%)>DMA(5.2%).


Sign in / Sign up

Export Citation Format

Share Document