Minimum Gas Flow Rate for Continuous Liquid Removal in Gas Wells

Author(s):  
Meshack Ike Ilobi ◽  
Chi U. Ikoku
2021 ◽  
Author(s):  
Ahmed Abdullah alghamdi ◽  
Nawaf Saud Almutairi ◽  
Ali Muslim ◽  
Humoud Khaldi ◽  
Abdulazeez Abdulraheem

Abstract Objective/Scope Accurate well production rate measurement is critical for reservoir management. The production rate measurement is carried out using surface devices, such as orifice flow meter and venturi flow meter. For large offshore fields development with a high number of wells, the installation and maintenance costs of these flowmeters can be significant. Therefore, an alternative solution needs to be developed. This paper described the successful implementation of Artificial Intelligence in predicting the production rate of big-bore gas wells in an offshore field. Methods, Procedures, Process Successful application of AI depends on capitalizing on a large set of data. Therefore, flowing parameters data were collected for more than 30 gas wells and totaling over 100,000 data points. These wells are producing gas with slight solid production from a high-pressure high-temperature field. In addition, these wells are equipped with a multistage choke that reduces the noise and vibration levels. An Artificial Neural Network is trained on the data using Gradient Descent method as the optimization algorithm. The network takes as an input the upstream and downstream pressure and temperature, and the choke size. The output is the gas rate measured in MMscf/day. Results, Observations, Conclusions The data set was divided into 70% for training the neural network and 30% for validation. Artificial Neural Network (ANN) was used and the developed model compared exceptionally well with the gas rates measured from the calibrated venturi meters. The gas rate estimation was within a 5% error. The model was developed for two types of completions: 7" and 9-5/8" production tubing. One of the challenges was how to estimate the choke wear which plays a major role in the quality of the choke size data. A linear choke wear deterioration is applied in this case, while work in progress is taking place for acquiring acoustic data that can significantly improve the choke wear modeling. Novel/Additive Information The novel approach presented in this paper capitalizes on Al analytics for estimating accurate gas flow rate values. This approach has improved the reservoir data management by providing accurate production rate values which has drastically improved the reservoir simulation. Moreover, the robustness of the AI model has forced us to rethink the conventional design of installing a flow meter for every well. As shown in this paper, the AI model served as an alternative to conventional venturi meters. We believe that the application of AI models to other aspects of production surveillance will lead to a shift into how operators design production facilities.


2021 ◽  
Author(s):  
Hofmann M ◽  
Sudad H Al-Obaidi ◽  
Kamensky IP

As a result of flooding and accumulations of liquid at the bottomholes, the operating conditions of gas wells become complicated, so that they end up selfsqueezing and losing of gas production.A method is proposed for determining the technological parameters of operation of the gas wells with the purpose of removing liquid from the bottom of the wells. Data from the gas dynamics and special studies were used to develop this method, which has been tested on one of the oil and gas condensate fields. It offers the possibility to increase the accuracy of the information provided by the fund and to ensure that the production wells are operated as efficiently as possible with the use of this method. In the case of liquid accumulation in the well that is insignificant, or when water is present in the well, the technique is beneficial in that it allows determining the technological parameters of well operation and ensuring the removal of the liquid from the bottom of the well.


Author(s):  
R. М. Kondrat ◽  
О. R. Kondrat ◽  
L. І. Khaidarova ◽  
N. М. Hedzyk

The development of gas deposits at the final stage is usually complicated by watering production wells. With the advent of water in the formation product, the gas production rate decreases due to the decrease in the gas-saturated thickness of the reservoirs and the increase in pressure loss during movement of the liquid-gas mixture in the wellbore and flow lines as compared to the movement of gas only. Well operation is gradually becoming unstable, periodic with the subsequent cessation of natural flowing. The methods of operation of flooded wells are characterized. The use of the gas-lift method for the operation of flooded gas wells in depleted gas fields is justified. The effect of tubing diameter, wellhead pressure and water factor on the parameters of gas-lift operation of flooded wells is investigated. The research is carried out using the improved technique proposed by the authors and the PipeSim program for hypothetical (simulated) well conditions. The studies performed are presented in the form of graphical dependences of the production rate of reservoir gas, the minimum required gas production rate for the liquid to be taken from the bottom of the well to the surface, lift gas flow rate and bottomhole pressure on wellhead pressure, diameter of tubing and water factor. The research results indicate a significant coincidence of the values ​​of the calculated parameters of the gas-lift operation of the watered well according to the proposed methods and the PipeSim program. Using the research results, it is possible to select the optimal diameter of the tubing string and evaluate the value of formation gas flow rate and gas-lift flow rates for various values ​​of water factor and wellhead pressure.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Jun Li ◽  
Boyun Guo ◽  
Kegang Ling

With the downturn in natural gas prices, it is vitally important to reduce the cost of drilling shale gas wells. Gas-percussion drilling has been recently employed in shale gas field development. It increases footage capacity by nearly 60%. However, wellbore erosion by the high-velocity gas has been recognized as a problem that hinders further application of the technology. This paper investigates a potential solution to the problem using a new type of flow-diverting joint (FDJ). The FDJ with exchangeable nozzles can be installed at the shoulder of the drill collar to partially bypass gas flow into the annulus between the drill pipe and open hole. Hydraulics computations with a state-of-the-art computer program indicate that this technique will allow for the use of high-gas injection rate to carry drill cuttings while reducing the gas flow rate through the drill bit. As a result, the gas velocity in the drill collar–open hole annulus can be maintained at a safe level to prevent hole erosion. The reduced gas flow rate through the drill bit also minimizes wellbore enlargement at hole bottom. Sensitivity analyses with the computer program show that the FDJ-nozzle area to bit-nozzle area ratio is directly proportional to the annulus area ratio, and the bypassed flow rate fraction remains constant as drilling progresses. This makes the FDJ system easy to design and practical to use over a long section of hole to be drilled.


2012 ◽  
Vol 616-618 ◽  
pp. 730-736
Author(s):  
Rong He Liu ◽  
Ben Quan Zhang ◽  
Wen Guang Feng

Based on the Turner’s liquid-loading model for gas wells, combined with Liquid Membrane Breaking Theory and Law of energy Conservation, a new liquid-loading model for mist flow in wave shaped crushing mode for gas-liquid wells was put forward, and a new equation for critical liquid-loading gas flow rate estimation was derived. The results show that the lowest conditions for liquid loading is that most of liquid drops can continuously move upward in gas flow, and when radii of liquid drops are smaller than 1600μm, liquid drops in the wellbore are basically in spherical shape. The critical liquid-carrying gas flow rate, in gas wells, calculated with this new model, is more reasonable and accurate.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


1998 ◽  
Vol 63 (6) ◽  
pp. 881-898
Author(s):  
Otakar Trnka ◽  
Miloslav Hartman

Three simple computational techniques are proposed and employed to demonstrate the effect of fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous stirred tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas-solid reaction occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuations on reactant concentrations at the exit of the CSTR is shown in four different situations.


Sign in / Sign up

Export Citation Format

Share Document