Type Curves for Finite Radial and Linear Gas-Flow Systems: Constant-Terminal-Pressure Case

1985 ◽  
Vol 25 (05) ◽  
pp. 719-728 ◽  
Author(s):  
Robert D. Carter

Carter, Robert D., SPE, Amoco Production Co. Abstract This paper presents gas-production-rate results in type curve form for finite radial and linear flow systems produced at a constant terminal (bottomhole) pressure. These produced at a constant terminal (bottomhole) pressure. These results can be used in the analysis of actual gas and oil rate/time data to estimate reservoir size and to infer reservoir shape. The type curves are based on dimensionless variables that are a generalized form of those presented previously. In addition, an approximate drawdown previously. In addition, an approximate drawdown parameter is presented. Example applications that parameter is presented. Example applications that demonstrate the applicability of the type curves to a variety of reservoir configurations are given. The Appendix contains derivations of the dimensionless variables and the drawdown parameter. Introduction The gas-bearing rock in some low-permeability gas fields consists of sandstone lenses of uncertain but limited size. In such fields, the reservoir area and volume drained by individual wells cannot be inferred from well spacing. Moreover, good reserve estimates using plots of p/z vs. cumulative production are often not possible because of the difficulty of obtaining reservoir pressure from buildup tests. Therefore, reserve estimation techniques that use performance data, such as production rate as a function performance data, such as production rate as a function of time, are needed. Although this problem has been recognized, the techniques proposed in the past for application to gas reservoirs have been mostly empirical. The present work offers a method that is consistent with the basic theory of gas flow in porous media for analyzing production data to estimate reserves. This method will also provide some inference about reservoir shape. Type Curves Basic Assumptions Six basic assumptions are made in generating the type curves.The flow geometry is radial; therefore, the reservoir either is circular and is produced by a concentrically located well of finite radius or is a sector of a circle produced by the corresponding sector of the well (Fig. 1). produced by the corresponding sector of the well (Fig. 1). In the limit as, the flow regime becomes a linear one.Permeability, porosity, and thickness are constant throughout the reservoir.The pressure at the well radius (usually corresponding to the bottomhole flowing pressure CBHFP]) is held constant.The initial reservoir pressure is constant (independent of position).Non-Darcy flow is neglected.The flowing fluid is either a gas with viscosity and compressibility that vary with pressure or an oil with a constant viscosity/compressibility product. Definitions. The type curves are based on specially defined dimensionless time (tD), dimensionless rate (qD), a flow geometry parameter ( ), and a drawdown parameter ( ). These variables are defined by the following parameter ( ). These variables are defined by the following equations, which are derived in the Appendix. ............................ (1) ................................(2) ...............................(3) .....................(4) Results The type curves for rate as a function of time are presented in Fig. 2. A finite-difference radial-gas-flow simulator was used to generate the data for constructing the type curves. Two flow periods can be identified. The infinite-acting (or transient) period is that period before which the curves become concave downward. The transient period ends at to values ranging from about 0.15 to about 1.0, depending on the value of 17 that characterizes the curve. The curves are concave downward during the late-time or depletion period. Notice that the primary characterizing parameter during the infinite-acting period is, and is parameter during the infinite-acting period is, and is the characterizing parameter for late-time behavior (tD >1). The curves for = 1.234 (linear flow) are straight lines with a negative half-slope during the infinite-acting period. SPEJ p. 719

2014 ◽  
Vol 17 (02) ◽  
pp. 220-232 ◽  
Author(s):  
Gorgonio Fuentes-Cruz ◽  
Eduardo Gildin ◽  
Peter P. Valkó

Summary This work introduces a new model for the production-decline analysis (PDA) of hydraulically fractured wells on the basis of the concept of the induced permeability field. We consider the case when the hydraulic-fracturing operation—in addition to establishing the fundamental linear-flow geometry in the drainage volume—alters the ability of the formation to conduct fluids throughout, but with varying degrees depending on the distance from the main fracture plane. We show that, under these circumstances, the reservoir response departs from the uniform-permeability approach significantly. The new model differs from the once promising group of models that are inherently related to power-law-type variation of the permeability-area product and thus are burdened by a mathematical singularity inside the fracture. The analysis of field cases reveals that the induced permeability field can be properly represented by a linear or exponential function characterized by the maximal induced permeability k0 and the threshold permeability k*. Both these permeabilities are induced (superimposed on the formation) by the hydraulic-fracturing treatment; thus, the model can be considered as a simple, but nontrivial, formalization of the intuitive stimulated-reservoir-volume (SRV) concept. It is quite reasonable to assume that the maximum happens at the fracture face and that the minimum happens at the outer boundary of the SRV. The contrast between maximal and minimal permeability, SR = k0/k*, will be of considerable interest, and thus, we introduce a new term for it: stimulation ratio (SR). Knowledge of these parameters is crucial in evaluating the effectiveness of today's intensively stimulated well completions, especially multifractured horizontal wells in shale gas. The approach describes, in a straightforward manner, the production performance of such wells exhibiting transient linear flow and late-time boundary-dominated flow affected also by a skin effect (i.e., by an additional pressure drop in the system characterized by linear dependence on production rate). This work provides the induced-permeability-field model within the single-medium concept, and shows that some features widely believed to require a dual-medium (double-porosity) representation are already present. Advantages and drawbacks related to applying the concept in a dual-medium approach will be discussed in an upcoming work. We present the model and its analytical solution in Laplace space. We provide type curves for decline-curve analysis, closed-form approximate solutions in the time domain, field examples, and practical guidelines for the analysis of commonly occurring production characteristics of massively stimulated reservoirs.


SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 1053-1066 ◽  
Author(s):  
Pichit Vardcharragosad ◽  
Luis F. Ayala ◽  
Miao Zhang

Summary Linear flow is a fundamental reservoir-flow geometry typically associated with production from unconventional resources stimulated by means of hydraulic fracturing. Recently, linear flow has been intensively studied following the fast pace of development of unconventional resources. Previous studies have mainly focused on early transient behavior and behavior of composite linear-flow systems. In this work, a density-based analysis method is extended to study decline behavior of the linear-flow system in boundary-dominated flow (BDF). In this study, we first discuss traditional approaches used to model linear flow in gas reservoirs. Second, we show the applicability of the density-based method for gas linear flow both analytically and numerically. Next, late-time solutions are discussed, and the analytical forecasting solution that best describes the BDF behavior is selected for long-term decline-behavior studies. Previously reported results on radial flow as well as early transient-flow effect are also incorporated to provide a more complete understanding of decline behavior and the impact of flow geometry. We show that boundary-dominated responses in linear-flow scenarios fully develop at much later stages of reservoir depletion compared with radial-flow scenarios. As a result, and in marked contrast with radial flow, purely hyperbolic decline behavior may be completely lost in linear-flow scenarios during boundary-dominated conditions. It is demonstrated that most of the recoverable hydrocarbons are produced during the early transient period for linear-flow conditions, whereas most of them are recovered during the BDF period for radial flow. These results suggest that the availability of accurate early transient models is much more critical for the formulation of linear-flow-decline models than had been traditionally necessary for radial-flow-decline models.


2018 ◽  
Vol 876 ◽  
pp. 181-186
Author(s):  
Son Tung Pham

Sand production is a complicated physical process depending on rock mechanical properties and flow of fluid in the reservoir. When it comes to sand production phenomenon, many researchers applied the Geomechanical model to predict the pressure for the onset of sand production in the reservoir. However, the mass of produced sand is difficult to determine due to the complexity of rock behavior as well as fluid behavior in porous media. In order to solve this problem, there are some Hydro – Mechanical models that can evaluate sand production rate. As these models require input parameters obtained by core analysis and use a large empirical correlation, they are still not used popularly because of the diversity of reservoirs behavior in the world. In addition, the reliability of these models is still in question because no comparison between these empirical models has been studied. The onset of sand production is estimated using the bottomhole pressure that makes the maximum effective tangential compressive stress equal or higher than the rock strength (failure criteria), which is usually known as critical bottomhole pressure (CBHP). Combining with Hydro – Mechanical model, the main objective of this work aims to develop a numerical model that can solve the complexity of the governing equations relating to sand production. The outcome of this study depicts sand production rate versus time as well as the change of porosity versus space and time. In this paper, the Geomechanical model coupled with Hydro – Mechanical model is applied to calibrate the empirical parameters.


1981 ◽  
Vol 48 (4) ◽  
pp. 757-762 ◽  
Author(s):  
R. H. Nilson

A one-dimensional gas-flow drives a wedge-shaped fracture into a linearly elastic, impermeable half space which is in uniform compression, σ∞, at infinity. Under a constant driving pressure, p0, the fracture/flow system accelerates through a sequence of three self-similar asymptotic regimes (laminar, turbulent, inviscid) in which the fracture grows like an elementary function of time (exponential, near-unity power, and linear, respectively). In each regime, the transport equations are reducible under a separation-of-variables transformation. The integro-differential equations which describe the viscous flows are solved by iterative shooting methods, using expansion techniques to accomodate a zero-pressure singularity at the leading edge of the flow. These numerical results are complemented by an asymptotic analysis for large pressure ratio (N = p0/σ∞ → ∞) which exploits the disparity between the fracture length and penetration length of the flow. Since the seepage losses to a surrounding porous medium are shown to be negligable in the late-time long-fracture limit, the results have application to geologic problems such as: containment evaluation of underground nuclear tests, stimulation of oil and gas wells, and permeability enhancement prior to in situ combustion processes.


2015 ◽  
Author(s):  
Basel Alotaibi ◽  
David Schechter ◽  
Robert A. Wattenbarger

Abstract In previous works and published literature, production forecast and production decline of unconventional reservoirs were done on a single-well basis. The main objective of previous works was to estimate the ultimate recovery of wells or to forecast the decline of wells in order to estimate how many years a well could produce and what the abandonment rate was. Other studies targeted production data analysis to evaluate the completion (hydraulic fracturing) of shale wells. The purpose of this work is to generate field-wide production forecast of the Eagle Ford Shale (EFS). In this paper, we considered oil production of the EFS only. More than 6 thousand oil wells were put online in the EFS basin between 2008 and December 2013. The method started by generating type curves of producing wells to understand their performance. Based on the type curves, a program was prepared to forecast the oil production of EFS based on different drilling schedules; moreover drilling requirements can be calculated based on the desired production rate. In addition, analysis of daily production data from the basin was performed. Moreover, single-well simulations were done to compare results with the analyzed data. Findings of this study depended on the proposed drilling and developing scenario of EFS. The field showed potential of producing high oil production rate for a long period of time. The presented forecasted case gave and indications of the expected field-wide rate that can be witnessed in the near future in EFS. The method generated by this study is useful for predicting the performance of various unconventional reservoirs for both oil and gas. It can be used as a quick-look tool that can help if numerical reservoir simulations of the whole basin are not yet prepared. In conclusion, this tool can be used to prepare an optimized drilling schedule to reach the required rate of the whole basin.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


2004 ◽  
Vol 126 (1) ◽  
pp. 134-137 ◽  
Author(s):  
Rizos N. Krikkis ◽  
Panagiotis Razelos

In the present study the optimum dimensions of circular rectangular and triangular profile fins with fin-to-fin and fin-to-base radiant interaction are determined. The basic assumptions are one-dimensional heat conduction and black surface radiation. The governing equations are formulated by means of dimensionless variables and solved numerically. The optimum fin dimensions, bore thickness and height, are presented in generalized dimensionless form and explicit correlations are provided for the dimensionless optimum parameters. The results are analyzed and reported in diagrams that give insight to the operational characteristics of the heat rejection mechanism.


2012 ◽  
Vol 433-440 ◽  
pp. 221-226
Author(s):  
Lan Chen ◽  
Yu Heng Quan

The effect of gas flow rate on degradation of chlorinated phenoxy acetic acids herbicide 2,4-D(2,4-dichlorophenoxyacetic acid) in aqueous solution with O3 or O 3/H 2O2 process was investigated in a bubbling semi-batch reactor. The experiments were conducted to study the degradation rate constant, mass transfer condition, ozone consumption and formation of byproduct hydrogen peroxide at different gas flow rates. The results show that gas flow rate is a complicated parameter in the process. The contact time of gas and liquid phase varies with different gas flow rate, consequently ozone mass transfer condition changes with different gas flow rates. The production rate of ozone, amount of ozone in the end gas and ozone consumption during the degradation with ozonation and O 3/H2O2 process vary with different of gas flow rates. Hydrogen peroxide is a byproduct during the ozonation or O3/H2O2 process of 2,4-D. The production rate of hydrogen peroxide is also affected by the gas flow rate. In general gas flow rate has both positive and negative effect on the 2,4-D degradation.


1992 ◽  
Vol 46 (8) ◽  
pp. 1245-1250 ◽  
Author(s):  
Gary D. Rayson ◽  
Daniel Yang Shen

An inductively coupled plasma torch has been developed which utilizes linear coolant gas flows and is operated at reduced applied power levels and argon gas consumption rates. The linear flow torch (LiFT) is constructed by the addition of a machined insert between the outer and intermediate tubing of a conventional tangential flow torch (TaFT). This LiFT configuration has been demonstrated to be capable of providing improved detection limits, in comparison to a TaFT, at conditions of lower power and gas flow. Under those conditions the LiFT was also demonstrated to produce less severe interferences to analyte emission in the presence of an easily ionizable element.


2014 ◽  
Vol 757 ◽  
pp. 943-971 ◽  
Author(s):  
I. Lunati ◽  
S. H. Lee

AbstractGas flow through fractured nanoporous shale formations is complicated by a hierarchy of structural features (ranging from nanopores to microseismic and hydraulic fractures) and by several transport mechanisms that differ from the standard viscous flow used in reservoir modelling. In small pores, self-diffusion becomes more important than advection; also, slippage effects and Knudsen diffusion might become relevant at low densities. We derive a nonlinear effective diffusion coefficient that describes the main transport mechanisms in shale-gas production. In dimensionless form, this coefficient depends only on a geometric factor (or dimensionless permeability) and on the kinetic model that describes the gas. To simplify the description of the complex structure of fractured shales, we observe that the production rate is controlled by the flow from the shale matrix (which has the smallest diffusivity) into the fracture network, which is assumed to produce instantaneously. Therefore, we propose to model the flow in the shale matrix and estimate the production rate with a simple bundle-of-dual-tubes model (BoDTM), in which each tube is characterized by two diameters (one for transport and the other for storage). The solution of a single tube is approximately self-similar at early time, but not at late time, when the gas flux decays exponentially owing to the finite length of the tube. To construct a BoDTM, a reliable estimate of the joint statistics of the matrix-porosity parameters is required. This can be either inferred from core measurements or postulated on the basis of somea prioriassumptions when information from laboratory and field measurements is scarce. By comparison with field production data from the Barnett shale-gas field, we demonstrate that BoDTM can be calibrated to estimate structural parameters of the shale formation and to predict the cumulative production of shale gas. Our framework has enough flexibility to construct models of increasing complexity that can be employed in the presence of a complex dataset or when more information is available.


Sign in / Sign up

Export Citation Format

Share Document