New Generation PDC Bits Set New Benchmarks in Carbonate Drilling, Resulting in Significant Performance Improvements and Cost Savings for the Operator

Author(s):  
ahmed Al-Hinaai ◽  
Marcel Geraud ◽  
Marco Cruz ◽  
Imran Khaliq Butt ◽  
Nicholas Martyn Evans
Author(s):  
Charles M. Oman ◽  
M. Stephen Huntley ◽  
Scott A. M. Rasmussen

Pilots flying non-precision instrument approaches traditionally rely on a course deviation indicator (CDI) analog display of cross track error (XTE) information. The new generation of GPS based area navigation (RNAV) receivers can also compute accurate track angle error (TAE). Does display of supplementary TAE information improve intercept and tracking performance? Six pilots each flew 20 approaches in a light twin simulator to evaluate 3 different TAE/XTE display formats, in comparison to a conventional receiver CDI display and a more centrally located Horizontal Situation Indicator (HSI). Statistically significant performance improvements were seen in several phases of the approach when using the supplementary TAE information. Analog was preferred over numeric format. However, the advantage was offset by the need to widen the pilot's instrument scan to include the receiver display. Pilots found TAE helpful in establishing intercepts and the appropriate wind correction angle. Findings support the recent FAA TSO-C129 requirement that XTE be presented in the pilot's primary field of view, and the recommendation that avionics manufacturers include supplementary analog TAE display capability.


2021 ◽  
pp. 1-40
Author(s):  
Yousif Alkhulaifi ◽  
Jihad Hassan Hussain Al-Sadah ◽  
Esmail M. A. Mokheimer

Abstract The demand for improving living standards has led to increasing freshwater consumption and comfort cooling, requiring significant performance improvements. In this regard, a novel and efficient cascade refrigeration system for simultaneous generation of considerable freshwater and cooling amounts is proposed. The system does not require dedicated components for desalinating seawater because they are dual-purpose. Utilizing the cascade configuration enhances energy efficiency by lowering the compression work while improving energy recovery by utilizing existing heat to vaporize seawater for desalination. A mathematical model of the innovative system based on thermodynamic and economic principles has been developed and utilized to predict the proposed system's thermal performance and cost savings. A comprehensive analysis has been conducted to study the effect of multiple parameters such as the evaporator, condenser, and brine boiling temperatures. The main studied parameters were COP, GOR, freshwater production, and total cost savings. For a 10 TR unit, the freshwater production was between 56.11 – 73.36 kg/h, with cost savings reaching 2,226 US$/yr. It was found that the freshwater production increased with condenser and brine boiling temperature but decreased with evaporator temperature. The COP improvement can be as much as 26% over the reference cooling system without desalination.


2009 ◽  
Author(s):  
Yaqdhan Nasser AL Nabhani ◽  
Henri Obame-Ondo ◽  
Mahmoud Ahmed Al-Kindi ◽  
Ahmed Saidi ◽  
Moosa Bader Al-Sheriyani ◽  
...  

Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1639
Author(s):  
Seungmin Jung ◽  
Jihoon Moon ◽  
Sungwoo Park ◽  
Eenjun Hwang

Recently, multistep-ahead prediction has attracted much attention in electric load forecasting because it can deal with sudden changes in power consumption caused by various events such as fire and heat wave for a day from the present time. On the other hand, recurrent neural networks (RNNs), including long short-term memory and gated recurrent unit (GRU) networks, can reflect the previous point well to predict the current point. Due to this property, they have been widely used for multistep-ahead prediction. The GRU model is simple and easy to implement; however, its prediction performance is limited because it considers all input variables equally. In this paper, we propose a short-term load forecasting model using an attention based GRU to focus more on the crucial variables and demonstrate that this can achieve significant performance improvements, especially when the input sequence of RNN is long. Through extensive experiments, we show that the proposed model outperforms other recent multistep-ahead prediction models in the building-level power consumption forecasting.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5748
Author(s):  
Zhibo Zhang ◽  
Qing Chang ◽  
Na Zhao ◽  
Chen Li ◽  
Tianrun Li

The future development of communication systems will create a great demand for the internet of things (IOT), where the overall control of all IOT nodes will become an important problem. Considering the essential issues of miniaturization and energy conservation, in this study, a new data downlink system is designed in which all IOT nodes harvest energy first and then receive data. To avoid the unsolvable problem of pre-locating all positions of vast IOT nodes, a device called the power and data beacon (PDB) is proposed. This acts as a relay station for energy and data. In addition, we model future scenes in which a communication system is assisted by unmanned aerial vehicles (UAVs), large intelligent surfaces (LISs), and PDBs. In this paper, we propose and solve the problem of determining the optimal flight trajectory to reach the minimum energy consumption or minimum time consumption. Four future feasible scenes are analyzed and then the optimization problems are solved based on numerical algorithms. Simulation results show that there are significant performance improvements in energy/time with the deployment of LISs and reasonable UAV trajectory planning.


2011 ◽  
Vol 44 (6) ◽  
pp. 1272-1276 ◽  
Author(s):  
Koichi Momma ◽  
Fujio Izumi

VESTAis a three-dimensional visualization system for crystallographic studies and electronic state calculations. It has been upgraded to the latest version,VESTA 3, implementing new features including drawing the external morphology of crystals; superimposing multiple structural models, volumetric data and crystal faces; calculation of electron and nuclear densities from structure parameters; calculation of Patterson functions from structure parameters or volumetric data; integration of electron and nuclear densities by Voronoi tessellation; visualization of isosurfaces with multiple levels; determination of the best plane for selected atoms; an extended bond-search algorithm to enable more sophisticated searches in complex molecules and cage-like structures; undo and redo in graphical user interface operations; and significant performance improvements in rendering isosurfaces and calculating slices.


2017 ◽  
Vol 107 (04) ◽  
pp. 301-305
Author(s):  
E. Prof. Uhlmann ◽  
F. Kaulfersch

Partikelverstärkte Titanmatrix-Verbundwerkstoffe erlauben erhebliche Leistungssteigerungen im Bereich hochtemperaturbeanspruchter Struktur- und Funktionsbauteile. Die durch die Partikelverstärkung gesteigerte Verschleißbeständigkeit, Festigkeit und Härte bedeuten eine große Herausforderung an die spanende Bearbeitung derartiger Hochleistungswerkstoffe. Mittels Zerspanuntersuchungen beim Fräsen konnten unter Variation der Werkzeuggeometrie, der Schneidstoffe und der Prozessstrategie Parameterbeiche identifiziert werden, mit denen die prozesssichere Zerspanung partikelverstärkter Titanmatrix-Verbundwerkstoffe möglich ist.   Particle-reinforced titanium matrix composites ensure significant performance improvements of structural and functional high-temperature components. However, the high wear resistance, toughness and hardness due to particle reinforcement is a major challenge in machining these high performance materials. By conducting milling experiments with a variation of tool geometry, cutting material and process strategy, process parameters could be identified that enable efficient machining of particle-reinforced titanium matrix composites.


2020 ◽  
Vol 70 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Goran Marković ◽  
Vlada Sokolović

Networks with distributed sensors, e.g. cognitive radio networks or wireless sensor networks enable large-scale deployments of cooperative automatic modulation classification (AMC). Existing cooperative AMC schemes with centralised fusion offer considerable performance increase in comparison to single sensor reception. Previous studies were generally focused on AMC scenarios in which multipath channel is assumed to be static during a signal reception. However, in practical mobile environments, time-correlated multipath channels occur, which induce large negative influence on the existing cooperative AMC solutions. In this paper, we propose two novel cooperative AMC schemes with the additional intra-sensor fusion, and show that these offer significant performance improvements over the existing ones under given conditions.


2021 ◽  
Author(s):  
Dilshad Hassan Sallo ◽  
Gabor Kecskemeti

Discrete Event Simulation (DES) frameworks gained significant popularity to support and evaluate cloud computing environments. They support decision-making for complex scenarios, saving time and effort. The majority of these frameworks lack parallel execution. In spite being a sequential framework, DISSECT-CF introduced significant performance improvements when simulating Infrastructure as a Service (IaaS) clouds. Even with these improvements over the state of the art sequential simulators, there are several scenarios (e.g., large scale Internet of Things or serverless computing systems) which DISSECT-CF would not simulate in a timely fashion. To remedy such scenarios this paper introduces parallel execution to its most abstract subsystem: the event system. The new event subsystem detects when multiple events occur at a specific time instance of the simulation and decides to execute them either on a parallel or a sequential fashion. This decision is mainly based on the number of independent events and the expected workload of a particular event. In our evaluation, we focused exclusively on time management scenarios. While we did so, we ensured the behaviour of the events should be equivalent to realistic, larger-scale simulation scenarios. This allowed us to understand the effects of parallelism on the whole framework, while we also shown the gains of the new system compared to the old sequential one. With regards to scaling, we observed it to be proportional to the number of cores in the utilised SMP host.


Sign in / Sign up

Export Citation Format

Share Document