Development of an Empirical Equation to Predict Hydraulic Fracture Closure Pressure from the Initial Shut-in Pressure after Treatment

Author(s):  
S. M. Kholy ◽  
I. M. Mohamed ◽  
M. Loloi ◽  
O. Abou-Sayed ◽  
A. Abou-Sayed
2021 ◽  
Author(s):  
Seyhan Emre Gorucu ◽  
Vijay Shrivastava ◽  
Long X. Nghiem

Abstract An existing equation-of-state compositional simulator is extended to include proppant transport. The simulator determines the final location of the proppant after fracture closure, which allows the computation of the permeability along the hydraulic fracture. The simulation then continues until the end of the production. During hydraulic fracturing, proppant is injected in the reservoir along with water and additives like polymers. Hydraulic fracture gets created due to change in stress caused by the high injection pressure. Once the fracture opens, the bulk slurry moves along the hydraulic fracture. Proppant moves at a different speed than the bulk slurry and sinks down by gravity. While the proppant flows along the fracture, some of the slurry leaks off into the matrix. As the fracture closes after injection stops, the proppant becomes immobile. The immobilized proppant prevents the fracture from closing and thus keeps the permeability of the fracture high. All the above phenomena are modelled effectively in this new implementation. Coupled geomechanics simulation is used to model opening and closure of the fracture following geomechanics criteria. Proppant retardation, gravitational settling and fluid leak-off are modeled with the appropriate equations. The propped fracture permeability is a function of the concentration of immobilized proppant. The developed proppant simulation feature is computationally stable and efficient. The time step size during the settling adapts to the settling velocity of the proppants. It is found that the final location of the proppants is highly dependent on its volumetric concentration and slurry viscosity due to retardation and settling effects. As the location and the concentration of the proppants determine the final fracture permeability, the additional feature is expected to correctly identify the stimulated region. In this paper, the theory and the model formulation are presented along with a few key examples. The simulation can be used to design and optimize the amount of proppant and additives, injection timing, pressure, and well parameters required for successful hydraulic fracturing.


2020 ◽  
Vol 145 ◽  
pp. 02072
Author(s):  
Wang Chengwang ◽  
Chen Shuai ◽  
Chen Gaojie ◽  
Lu Han

Hydraulic fracturing is one of the important measures to increase production of oil and gas reservoirs. Pressure after the assessment of the existing technology is usually divided into direct and indirect diagnosis of hydraulic fracture. The diversity of evaluation results is due to the uncertainty and immaturity of the technology itself. Up to now, we have not found an economical and accurate hydraulic fracture evaluation method in the development and application of fracturing technology. In this paper, the pressure treatment technology after the comprehensive evaluation of boundary conditions is studied. By introducing the support vector regression theory, an evaluation model and a solution for correcting fracturing parameters are proposed. Fracturing parameters include fracture length, fracture height, fracture width, integrated fracturing fluid leakage coefficient, fracture conductivity, fracture closure pressure, and so on. For the optimization of various parameters, objective and scientific comprehensive evaluation results can be obtained by selecting different kernel functions. The results show that the model and method based on support vector machine are effective and practical.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1634 ◽  
Author(s):  
Juhyun Kim ◽  
Youngjin Seo ◽  
Jihoon Wang ◽  
Youngsoo Lee

Most shale gas reservoirs have extremely low permeability. Predicting their fluid transport characteristics is extremely difficult due to complex flow mechanisms between hydraulic fractures and the adjacent rock matrix. Recently, studies adopting the dynamic modeling approach have been proposed to investigate the shape of the flow regime between induced and natural fractures. In this study, a production history matching was performed on a shale gas reservoir in Canada’s Horn River basin. Hypocenters and densities of the microseismic signals were used to identify the hydraulic fracture distributions and the stimulated reservoir volume. In addition, the fracture width decreased because of fluid pressure reduction during production, which was integrated with the dynamic permeability change of the hydraulic fractures. We also incorporated the geometric change of hydraulic fractures to the 3D reservoir simulation model and established a new shale gas modeling procedure. Results demonstrate that the accuracy of the predictions for shale gas flow improved. We believe that this technique will enrich the community’s understanding of fluid flows in shale gas reservoirs.


1996 ◽  
Vol 11 (02) ◽  
pp. 122-128 ◽  
Author(s):  
C.J. de Pater ◽  
Jean Desroches ◽  
Jeroen Groenenboom ◽  
Leen Weijers

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6747
Author(s):  
Abdulaziz Ellafi ◽  
Hadi Jabbari

Researchers and operators have recently become interested in the individual stage optimization of unconventional reservoir hydraulic fracture. These professionals aim to maximize well performance during an unconventional well’s early-stage and potential Enhanced Oil Recovery (EOR) lifespan. Although there have been advances in hydraulic fracturing technology that allow for the creation of large stimulated reservoir volumes (SRVs), it may not be optimal to use the same treatment design for all stages of a well or many wells in an area. We present a comprehensive review of the main approaches used to discuss applicability, pros and cons, and a detailed comparison between different methodologies. Our research outlines a combination of the Diagnostic Fracture Injection Test (DFIT) and falloff pressure analysis, which can help to design intelligent production and improve well performance. Our field study presents an unconventional well to explain the objective optimization workflow. The analysis indicates that most of the fracturing fluid was leaked off through natural fracture surface area and resulted in the estimation of larger values compared to the hydraulic fracture calculated area. These phenomena might represent a secondary fracture set with a high fracture closure stress activated in neighbor stages that was not well-developed in other sections. The falloff pressure analysis provides significant and vital information, assisting operators in fully understanding models for fracture network characterization.


2021 ◽  
Vol 7 ◽  
pp. 7785-7803
Author(s):  
Hu Meng ◽  
Hongkui Ge ◽  
Jie Bai ◽  
Xiaoqiong Wang ◽  
Jialiang Zhang ◽  
...  

2021 ◽  
Vol 2057 (1) ◽  
pp. 012078
Author(s):  
A M Skopintsev

Abstract Hydraulic fracturing is a technology that is widely used in the development of oil and gas formations. Given that the fracture closure has a strong impact on production, quantifying the resulting fracture conductivity is critical for optimizing treatment design. The goal of this paper is to better understand the influence of the closing stress on the fracture conductivity when the proppant distribution is heterogeneous. In addition to the spatial proppant distribution, the conductivity of the propped fracture is affected by proppant deformation and embedment. Numerical results indicate that compressibility of proppant can significantly change the residual fracture aperture and, consequently, production performance in oil and gas reservoirs


2021 ◽  
Author(s):  
Sergey Turuntaev ◽  
Evgeny Zenchenko ◽  
Petr Zenchenko ◽  
Maria Trimonova ◽  
Nikolai Baryshnikov

<p>Acoustic transmission data obtained in laboratory experiment were used to estimate main stages of hydraulic fracture onset, growth and filling by fracturing fluid. Laboratory setup consists of two horizontal disks with a diameter of 750 mm, and a sidewall with an internal diameter of 430 mm. The disks and the sidewall form a pressure chamber with a diameter of 430 mm at a height of 70 mm. There are a number of holes in the disks and the sidewall that are used for mounting ultrasonic transducers, pressure sensors, as well as for fluid injections. As a model material, a mixture of gypsum with cement was used, which was poured into the chamber. The sample was saturated with water gypsum solution and loaded with vertical and two horizontal stresses using special chambers. The fracture was created by viscous fluid (mineral oil with viscosity 0.1 Pa*s) injection with a constant rate 0.2 cm<sup>3</sup>/s through a cased borehole (diameter 12 mm) with a horizontal slot, which was preliminary located in the center of the sample. Hydraulic fracturing monitoring was carried out by recording of ultrasonic pulses passing through the sample during fracturing. To separate the ultrasonic pulses, the frequency of their sending was used. After that, the envelope of each record fragment was constructed using the Hilbert transformation and its maximum was found. Comparison of the ultrasonic pulse amplitude variations and injection pressure led to the following observations. Initial decrease in the pulse amplitudes began before the maximum pressure was reached, which may indicate the hydraulic fracturing onset at a pressure less than the maximum. The amplitude decline occurs smoothly, so it is difficult to identify any characteristic point on these curves and, accordingly, it is difficult to establish an accurate time of the fracturing onset and the fracture rate. The fracture rate was estimated by different methods previously as ≈130 mm/s. After the decline, the pulse amplitudes started to increase, that was related with the injection fluid front propagation in the fracture. In contrast to the decline, the beginning of the amplitude growth was clearly detected. Taking into account the spatial locations of the ultrasonic pulse source, receivers, and fracture, it is possible to estimate the propagation velocity of the fracturing fluid front as ≈35 mm/s. After the increase, the ultrasonic pulse amplitudes started to decrease significantly (up to 3 times), which is probably due to the further expansion of the fracture aperture. On the transducers located closer to the well, this decline is maximum. When the injection is stopped, the ultrasonic pulse amplitudes began to grow again, which indicates the fracture closure as the injection pressure decrease. In the experiments on the fracture re-opening under various stress applied to the sample, a linear relationship between the fracture re-opening pressure and applied vertical stress was found. This type of relationship should be expected, but values of the relation parameters declined from the values suggested in theoretical research, which was explained by taken into account back-stresses and non-linear behavior of the sample material.</p>


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 290-301 ◽  
Author(s):  
S. M. Kholy ◽  
I. M. Mohamed ◽  
M.. Loloi ◽  
O.. Abou-Sayed ◽  
A.. Abou-Sayed

Summary During hydraulic-fracturing operations, conventional pressure-falloff analyses (G-function, square root of time, and other diagnostic plots) are the main methods for estimating fracture-closure pressure. However, there are situations when it is not practical to determine the fracture-closure pressure using these analyses. These conditions occur when closure time is long, such as in mini-fracture tests in very tight formations, or in slurry-waste-injection applications where the injected waste forms impermeable filter cake on the fracture faces that delays fracture closure because of slower liquid leakoff into the formation. In these situations, applying the conventional analyses could require several days of well shut-in to collect enough pressure-falloff data during which the fracture closure can be detected. The objective of the present study is to attempt to correlate the fracture-closure pressure to the early-time falloff data using the field-measured instantaneous shut-in pressure (ISIP) and the petrophysical/mechanical properties of the injection formation. A study of the injection-pressure history of many injection wells with multiple hydraulic fractures in a variety of rock lithologies shows a relationship between the fracture-closure pressure and the ISIP. An empirical equation is proposed in this study to calculate the fracture-closure pressure as a function of the ISIP and the injection-formation rock properties. Such rock properties include formation permeability, formation porosity, initial pore pressure, overburden stress, formation Poisson's ratio, and Young's modulus. The empirical equation was developed using data obtained from geomechanical models and the core analysis of a wide range of injection horizons with different lithology types of sandstone, carbonate, and tight sandstone. The empirical equation was validated using different case studies by comparing the measured fracture-closure-pressure values with those predicted by using the developed empirical equation. In all cases, the new method predicted the fracture-closure pressure with a relative error of less than 6%. The new empirical equation predicts the fracture-closure pressure using a single point of falloff-pressure data, the ISIP, without the need to conduct a conventional fracture-closure analysis. This allows the operator to avoid having to collect pressure data between shut-in and the time when the actual fracture closure occurs, which can take several days in highly damaged and/or very tight formations. Moreover, in operations with multiple-batch injection events into the same interval/perforations, as is often the case in cuttings/slurry-injection operations, the trends in closure-pressure evolution can be tracked even if the fracture is never allowed to close.


Sign in / Sign up

Export Citation Format

Share Document