Influence of Pressure Difference Between Reservoir and Production Well on Steam-Chamber Propagation and Reservoir-Production Performance

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 452-476 ◽  
Author(s):  
Hao Xiong ◽  
Shijun Huang ◽  
Deepak Devegowda ◽  
Hao Liu ◽  
Hao Li ◽  
...  

Summary Steam-assisted gravity drainage (SAGD) is the most-effective thermal recovery method to exploit oil sand. The driving force of gravity is generally acknowledged as the most-significant driving mechanism in the SAGD process. However, an increasing number of field cases have shown that pressure difference might play an important role in the process. The objective of this paper is to simulate the effects of injector/producer-pressure difference on steam-chamber evolution and SAGD production performance. A series of 2D numerical simulations was conducted using the MacKay River and Dover reservoirs in western Canada to investigate the influence of pressure difference on SAGD recovery. Meanwhile, the effects of pressure difference on oil-production rate, stable production time, and steam-chamber development were studied in detail. Moreover, by combining Darcy's law and heat conduction along with a mass balance in the reservoir, a modified mathematical model considering the effects of pressure difference is established to predict the SAGD production performance. Finally, the proposed model is validated by comparing calculated cumulative oil production and oil-production rate with the results from numerical and experimental simulations. The results indicate that the oil production first increases rapidly and then slows down when a certain pressure difference is reached. The pressure difference has strong effects on steam-chamber-rising/expansion stages. However, at the expansion stage, lower pressure difference can achieve the same effect as high pressure difference. In addition, it is shown that the steam-chamber-expansion angle is a function of pressure difference. Using this finding, a new mathematical model is established considering the modification of the expansion angle, which (Butler 1991) treated as a constant. With the proposed model, production performance such as cumulative oil production and oil-production rate can be predicted. The steam-chamber shape is redefined at the rising stage, changing from a fan-like shape to a hexagonal shape, but not the single fan-like shape defined by (Butler 1991). This shape redefinition can clearly explain why the greatest oil-production rate does not occur when the steam chamber reaches the caprock. Literature surveys show few studies on how pressure difference influences steam-chamber development and SAGD recovery. The current paper provides a modified SAGD production model and an entirely new scope for SAGD enhanced oil recovery (EOR) that makes the pressure difference a new optimizable factor in the field.

2019 ◽  
Vol 38 (4) ◽  
pp. 801-818
Author(s):  
Ren-Shi Nie ◽  
Yi-Min Wang ◽  
Yi-Li Kang ◽  
Yong-Lu Jia

The steam chamber rising process is an essential feature of steam-assisted gravity drainage. The development of a steam chamber and its production capabilities have been the focus of various studies. In this paper, a new analytical model is proposed that mimics the steam chamber development and predicts the oil production rate during the steam chamber rising stage. The steam chamber was assumed to have a circular geometry relative to a plane. The model includes determining the relation between the steam chamber development and the production capability. The daily oil production, steam oil ratio, and rising height of the steam chamber curves influenced by different model parameters were drawn. In addition, the curve sensitivities to different model parameters were thoroughly considered. The findings are as follows: The daily oil production increases with the steam injection rate, the steam quality, and the degree of utilization of a horizontal well. In addition, the steam oil ratio decreases with the steam quality and the degree of utilization of a horizontal well. Finally, the rising height of the steam chamber increases with the steam injection rate and steam quality, but decreases with the horizontal well length. The steam chamber rising rate, the location of the steam chamber interface, the rising time, and the daily oil production at a certain steam injection rate were also predicted. An example application showed that the proposed model is able to predict the oil production rate and describe the steam chamber development during the steam chamber rising stage.


SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Min Yang ◽  
Maojie Chai ◽  
Rundong Qi ◽  
Zhangxin Chen ◽  
Linyang Zhang ◽  
...  

Summary A solvent-based thermal recovery process has the advantages of low capital expenditure, less energy consumption, and less greenhouse gas emission. Dimethyl ether (DME), as a renewable solvent, has been considered as a novel additive in the thermal bitumen recovery process. Being soluble in both water and oil phases, DME has the potential to enhance mass transfer and improve oil production. In this work, a phase behavior model of the DME-bitumen-water system is first developed considering DME partitioning between oil and water. A field-scale numerical simulation model with fine gridblocks is developed to investigate the heat and mass transfer mechanisms between DME and bitumen in the interface of a DME vapor chamber. The numerical model is validated with physical experiment results. The close agreement between measured and simulated production profiles indicates that the mechanisms are adequately captured. Meanwhile, various simulation scenarios are performed to evaluate the production performance and the energy efficiency, which is defined as the energy/oil ratio. It is found that the oil production rate in DME injection is 15% higher than that in butane injection at the early stage of production. The solvent penetration depth in DME injection is larger than that in butane injection. This is attributed to the enhanced mass transfer between DME and bitumen caused by the high diffusion of DME in the water phase and preferential partitioning of DME into the oil phase. Furthermore, energy consumption in the warm DME injection process is 48% less than that in warm butane injection and 75% less than that in steam-assisted gravity drainage (SAGD). This is because DME injection can be operated at a lower-temperature condition, leading to less energy transferred to heat reservoir rock/fluids and less heat loss to over/underburden. Therefore, DME is proved to be a technically promising and environmentally friendly solvent to enhance bitumen recovery. The DME-based thermal recovery technique exhibits superior advantages in unlocking poor-quality reservoirs, especially in high water saturation reservoirs and thin reservoirs.


SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 117-127 ◽  
Author(s):  
Zeinab Zargar ◽  
S. M. Farouq Ali

Summary Steam-assisted gravity drainage (SAGD) is a widely tested method for producing bitumen from oil sands (tar sands). Several analytical treatments of the basic process have been reported. In a typical model, the focus is on bitumen drainage ahead of an advancing heat front. In a few cases, a steady expression for bitumen-drainage rate is obtained. This has been modified by several investigators to include other effects. In all cases, the bitumen rate is obtained with no recourse to the steam-injection rate, which is worked out after the fact. The treatment of time dependence, in a few models, is tenuous, building it in partly by use of experimental data. In this work, the SAGD process is considered to develop during two stages: steam-chamber rise (or unsteady stage) and sideways-expansion (or steady stage). The sideways-expansion phase is modeled by two different approaches: constant volumetric displacement (CVD) and constant heat injection (CHI). In the transient-steam-chamber-rise stage of SAGD, initially there is no heat ahead of the rising front, but as the front rises with time, heat accumulates ahead of the front. In the sideways-spreading stage, there is a dynamic equilibrium situation. The accumulated heat ahead of the front plays a crucial role in this phase of SAGD modeling to find the advancing-front velocity. There is a reciprocal relation between the advancing-front velocity and the amount of stored heat ahead of the front. Higher front velocity leads to lower heat accumulation ahead of the front for mobilizing oil ahead and making it drain. By considering the equilibrium situation for thermal-recovery methods with a dominant-gravity-drainage driving force, the advancing-front velocity is responsible for heat accumulation ahead of the front, and, in turn, this heated oil drains away and is responsible for advancing the front. Therefore, the key point in the modeling is to determine the advancing-front movement that satisfies heat and mass balances over the system under equilibrium. In the CVD model, we postulate that the front movement is such that the steam-chamber growth is constant; that is, the oil-production rate is constant over time. In this work, it is shown that to obtain a constant oil-production rate from a mass balance, the injected heat has to be increased to compensate for the heat loss to the overburden and the growing accumulated heat ahead of the front caused by interface extension and decreasing front velocity. In the CHI model, heat is injected at a constant rate into the system, which provides heat for the growing steam-chamber size, increasing heat loss to the overburden, and heat flow by conduction ahead of the front. In this model, we are computing the front velocity that satisfies heat balance and mass balance for a constant heat-injection rate. Decreasing steam-chamber velocity with time from this model leads to decreasing oil-production rate. The modeling of the SAGD process in this work is different from that in previous works because it is believed that the steam-chamber velocity is the key point in SAGD modeling. In the CVD model, a constant maximum steam-chamber velocity is derived that gives a constant oil-production rate with a better agreement with field data. In the CHI approach, steam-chamber velocity, and hence the oil-production rate, is decreasing with time (strongly affected by increasing heat loss to the overburden).


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 492-510 ◽  
Author(s):  
Mohsen Keshavarz ◽  
Thomas G. Harding ◽  
Zhangxin Chen

Summary The majority of the models in the literature for the steam-assisted-gravity-drainage (SAGD) process solve the problem of conductive heat transfer ahead of a moving hot interface using a quasisteady-state assumption and extend the solution to the base of the steam chamber where the interface is not moving. This approach, as discussed by Butler (1985) and Reis (1992), results in inaccurate or sometimes infeasible estimations of the oil-production rate, steam/oil ratio (SOR), and steam-chamber shape. In this work, a new approach for the analytical treatment of SAGD is proposed in which the problem of heat transfer is directly solved for a stationary source of heat at the base of the steam chamber, where the oil production occurs. The distribution of heat along the interface is then estimated depending on the geometry of the steam chamber. This methodology is more representative of the heat-transfer characteristics of SAGD and resolves the challenges of those earlier models. In addition, it allows for the extension of the formulations to the early stages of the process when the side interfaces of the chamber are almost stationary, without loss of the solution continuity. The model requires the overall shape of the steam chamber as an input. It then estimates the movement of chamber interfaces using the movement of the uppermost interface point and by satisfying the global material-balance requirements. Oil-production rate and steam demand are estimated by Darcy's law and energy-balance calculations, respectively. The result is a model that is applicable to the entire lifetime of a typical SAGD project and provides more-representative estimations of in-situ heat distribution, bitumen-production rate, and SOR. With the improved knowledge obtained on the fundamentals of heat transfer in SAGD, the reason for the discrepancies between the various earlier models will be clarified. Results of the analytical models developed in this work show reasonable agreement with fine-scale numerical simulation, which indicates that the primary physics are properly captured. In the final section of the paper, the application of the developed models to two field case studies will be demonstrated.


SPE Journal ◽  
2016 ◽  
Vol 22 (03) ◽  
pp. 902-911 ◽  
Author(s):  
M.. Heidari ◽  
S. H. Hejazi ◽  
S. M. Farouq Ali

Summary Steam-assisted gravity drainage (SAGD) is one of the successful in-situ thermal-recovery methods for oil-sands production. In this paper, we provide a simple semianalytical model that can accurately analyze an SAGD project with variable properties. In particular, we investigate the effect of temperature-dependent properties such as thermal conductivity, heat capacity, and rock density on SAGD performance. The proposed model sequentially solves the transient nonlinear heat-transfer equation coupled with the continuity equation with Kirchhoff's transformation and the heat integral method (HIM). A criterion for timestep selection is defined on the basis of the Courant and Péclet numbers to guarantee the stability of the sequential technique. The results illustrate that the temperature-dependent physical properties affect temperature distributions ahead of steam chamber which consequently have a significant impact on the cumulative oil production and oil-production rate. Moreover, the results show that the temperature profile ahead of the steam chamber changes with time and space, and a 2D transient assumption for SAGD modeling is necessary. The semianalytical model runs in a small fraction of numerical-simulator runtime, yet it provides reasonable results. Thus, it has the potential to be used as a tool for quick SAGD evaluations.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2238-2249 ◽  
Author(s):  
A.. Perez-Perez ◽  
M.. Mujica ◽  
I.. Bogdanov ◽  
J.. Hy-Billiot

Summary Hybrid steam-solvent processes have gained importance as a thermal-recovery process for heavy oils in recent years. Numerous pilot projects during the last decade indicate the increasing interest in this technology. The steam/solvent coinjection process aims to accelerate oil production, increase ultimate oil recovery, reduce energy and water-disposal requirements, and diminish the volume of emitted greenhouse gases compared with the steam-assisted-gravity-drainage (SAGD) process. Among the identified physical mechanisms that play a role during the hybrid steam/solvent processes are the heat-transfer phenomena, the gravity drainage and viscous flow, the solvent mass transfer, and the mass diffusion/dispersion phenomena. The major consequence of this complex interplay is the improvement of oil-phase mobility that is controlled by the reduction in the oil-phase viscosity at the edge of the steam chamber. It follows that a detailed representation of this narrow zone is necessary to capture the involved physical phenomena. In this work, a study of sensitivity to grid size was carried out to define the appropriate grid necessary to represent the near-edge zone of the steam/solvent chamber. Our results for the steam/solvent coinjection process in a homogeneous synthetic reservoir indicate that a decimetric scale is required to represent with a good precision the heat and mass-transfer processes taking place at the edge of the steam chamber. In addition, we present some numerical results of the adaptive dynamic gridding application. Comparison was performed between the SAGD process and steam/solvent coinjection after the characterization and analysis of the mechanisms that govern oil production under typical Athabasca oil-sand conditions. Finally, in the framework of the proposed numerical methodology, the effect of solvent type and injection conditions on the oil-recovery efficiency is quantitatively illustrated. Published data for similar applications are also discussed. It is expected that this work will provide some insight for the simulation community about methodological aspects to be taken into account when hybrid steam/solvent processes would be modeled.


1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


Sign in / Sign up

Export Citation Format

Share Document