An Equation-of-State Model To Predict Surfactant/Oil/Brine-Phase Behavior

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1106-1125 ◽  
Author(s):  
S.. Ghosh ◽  
R. T. Johns

Summary Surfactant/polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant/oil/brine-phase behavior is critical to design SP-flood processes. Current practices involve repetitive laboratory experiments of dead crude at atmospheric pressure in a salinity scan that aims at finding an “optimum formulation” of chemicals for targeted oil reservoirs. Although considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced-oil-recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand (1930) plot is still used today to model the microemulsion-phase behavior with little predictive capability because these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper SP-flood designs. In this research, we develop a new predictive-phase-behavior model and introduce a new factor β to account for pressure changes in the HLD equation. This new HLD equation is coupled with the net-average-curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion-phase transitions (Winsor II–, Winsor III, and Winsor II+). The predictions of key parameters are compared with experimental data and are within relative errors of 4% (average 2.35%) for measured optimum salinities and 17% (average 10.55%) for optimum solubilization ratios. This paper is the first to use the HLD/NAC model to predict microemulsion-phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. Although the effect of pressure variations on microemulsion-phase behavior is generally thought to be small compared with temperature-induced changes, we show here that this is not necessarily the case. The predictive approach relies on tuning the model to limited experimental data (such as at atmospheric pressure) similar to what is performed for equation-of-state (EOS) modeling of miscible gasfloods. This new EOS-like model could significantly aid the design of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR.


SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 470-479 ◽  
Author(s):  
Saeid Khorsandi ◽  
Changhe Qiao ◽  
Russell T. Johns

Summary A compositional reservoir simulator that uses a predictive microemulsion phase-behavior model is essential for accurate estimation of oil recovery from surfactant/polymer (SP) floods. Current chemical-flooding simulators, however, use Hand's model (Hand 1939) for phase-behavior calculation. Hand's model can reasonably fit a limited set of experimental data, such as those of a salinity scan, but because it is empirical, it cannot predict phase behavior outside the matched data set. Hydrophyllic/lypophyllic difference (HLD) and net-average-curvature (NAC) equation of state (EOS) (Acosta et al. 2003) has shown great performance for tuning and prediction of experimental data. In this paper, the EOS model with the extension to two-phase regions has been incorporated for the first time into UTCHEM (2000) and our in-house general-purpose compositional simulator, PennSim (2013). All Winsor regions (Type II−, II+, III, and IV) are modeled by use of a consistent physics-based EOS model without the need for Hand's approach. The new simulator is therefore able to account correctly for gridblock properties, which can vary temporally and spatially, and significantly improve the modeling of phase behavior and oil recovery. The results show excellent agreement between UTCHEM and PennSim both in composition space and for composition/saturation profiles for the 1D simulation. The effects of varying pressure, temperature, equivalent alkane carbon number (EACN), and salinity on recoveries are demonstrated also in 1D simulations.



SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 647-659 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns ◽  
H.. Hoteit

Summary An accurate description of the microemulsion-phase behavior is critical for many industrial applications, including surfactant flooding in enhanced oil recovery (EOR). Recent phase-behavior models have assumed constant-shaped micelles, typically spherical, using net-average curvature (NAC), which is not consistent with scattering and microscopy experiments that suggest changes in shapes of the continuous and discontinuous domains. On the basis of the strong evidence of varying micellar shape, principal micellar curves were used recently to model interfacial tensions (IFTs). Huh's scaling equation (Huh 1979) also was coupled to this IFT model to generate phase-behavior estimates, but without accounting for the micellar shape. In this paper, we present a novel microemulsion-phase-behavior equation of state (EoS) that accounts for changing micellar curvatures under the assumption of a general-prolate spheroidal geometry, instead of through Huh's equation. This new EoS improves phase-behavior-modeling capabilities and eliminates the use of NAC in favor of a more-physical definition of characteristic length. Our new EoS can be used to fit and predict microemulsion-phase behavior irrespective of IFT-data availability. For the cases considered, the new EoS agrees well with experimental data for scans in both salinity and composition. The model also predicts phase-behavior data for a wide range of temperature and pressure, and it is validated against dynamic scattering experiments to show the physical significance of the approach.



SPE Journal ◽  
2017 ◽  
Vol 23 (03) ◽  
pp. 819-830 ◽  
Author(s):  
V. A. Torrealba ◽  
R. T. Johns

Summary Surfactant-based enhanced oil recovery (EOR) is a promising technique because of surfactant's ability to mobilize previously trapped oil by significantly reducing capillary forces at the pore scale. However, the field-implementation of these techniques is challenged by the high cost of chemicals, which makes the margin of error for the deployment of such methods increasingly narrow. Some commonly recognized issues are surfactant adsorption, surfactant partitioning to the excess phases, thermal and physical degradation, and scale-representative phase behavior. Recent contributions to the petroleum-engineering literature have used the hydrophilic/lipophilic-difference net-average-curvature (HLD-NAC) model to develop a phase-behavior equation of state (EoS) to fit experimental data and predict phase behavior away from tuned data. The model currently assumes spherical micelles and constant three-phase correlation length, which may yield errors in the bicontinuous region where micelles transition into cylindrical and planar shapes. In this paper, we introduce a new empirical phase-behavior model that is based on chemical-potential (CP) trends and HLD that eliminates NAC so that spherical micelles and the constant three-phase correlation length are no longer assumed. The model is able to describe all two-phase regions, and is shown to represent accurately experimental data at fixed composition and changing HLD (e.g., a salinity scan) as well as variable-composition data at fixed HLD. Further, the model is extended to account for surfactant partitioning into the excess phases. The model is benchmarked against experimental data (considering both pure-alkane and crude-oil cases), showing excellent fits and predictions for a wide variety of experiments, and is compared to the recently developed HLD-NAC EoS model for reference.



SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 428-439 ◽  
Author(s):  
M.. Roshanfekr ◽  
R.T.. T. Johns ◽  
M.. Delshad ◽  
G.A.. A. Pope

Summary The goal of surfactant/polymer (SP) flooding is to reduce interfacial tension (IFT) between oil and water so that residual oil is mobilized and high recovery is achieved. The optimal salinity and optimal solubilization ratios that correspond to ultralow IFT have recently been shown, in some cases, to be a strong function of the methane mole fraction in the oil at reservoir pressure. We incorporate a recently developed methodology to determine the optimal salinity and solubilization ratio at reservoir pressure into a chemical-flooding simulator (UTCHEM). The proposed method determines the optimal conditions on the basis of density estimates by use of a cubic equation of state (EOS) and measured phase-behavior data at atmospheric pressure. The microemulsion phase-behavior (Winsor I, II, and III) are adjusted on the basis of this predicted optimal salinity and solubilization ratio in the simulator. Parameters for the surfactant phase-behavior equation are modified to account for these changes, and the trend in the equivalent alkane carbon number (EACN) is automatically adjusted for pressure and methane content in each simulation gridblock. We use phase-behavior data from several potential SP floods to demonstrate the new implementation. The implementation of the new phase-behavior model into a chemical-flooding simulator allows for a better design of SP floods and more-accurate estimations of oil recovery. The new approach could also be used to handle free gas that may form in the reservoir; however, the SP-flood simulation when free gas is present is not the focus of this paper. We show that not accounting for the phase-behavior changes that occur when methane is present at reservoir pressure can greatly affect the oil recovery of SP floods. Improper design of an SP flood can lead to production of more oil as a microemulsion phase than as an oil bank. This paper describes the procedure to implement the effect of pressure and solution gas on microemulsion phase behavior in a chemical-flooding simulator, which requires the phase-behavior data measured at atmospheric pressure.



SPE Journal ◽  
2019 ◽  
Vol 25 (03) ◽  
pp. 1070-1081
Author(s):  
Pooya Khodaparast ◽  
Russell T. Johns

Summary Surfactant floods can attain high oil recovery if optimal conditions with ultralow interfacial tensions (IFT) are achieved in the reservoir. A recently developed equation-of-state (EoS) phase-behavior net-average-curvature (NAC) model based on the hydrophilic-lipophilic difference (HLD-NAC) has been shown to fit and predict phase-behavior data continuously throughout the Winsor I, II, III, and IV regions. The state-of-the-art for viscosity estimation, however, uses empirical nonpredictive based on of fits to salinity scans, even though other parameters change, such as the phase number and compositions. In this paper, we develop the first-of-its-kind microemulsion viscosity model that gives continuous viscosity estimates in composition space. This model is coupled to our existing HLD-NAC phase-behavior EoS. The results show that experimentally measured viscosities in all Winsor regions (two- and three-phase) are a function of phase composition, temperature, pressure, salinity, and the equivalent alkane carbon number (EACN). More specifically, microemulsion viscosities associated with the three-phase invariant point have an M shape as formulation variables change, such as from a salinity scan. The location and magnitude of viscosity peaks in the M are predicted from two percolation thresholds after tuning to viscosity data. These percolation thresholds as well as other model parameters change linearly with EACN and brine salinity. We also show that the minimum viscosity in the M shape correlates linearly with EACN or the viscosity ratio. Other key parameters in the model are also shown to linearly correlate with the EACN and brine salinity. On the basis of these correlations, two- and three-phase microemulsion viscosities are determined in five-component space (surfactant, two brine components, and two oil components) independent of flash calculations. Phase compositions from the EoS flash calculations are entered into the viscosity model. Fits to experimental data are excellent, as well as viscosity predictions for salinity scans not used in the fitting process.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.



SPE Journal ◽  
2018 ◽  
Vol 23 (02) ◽  
pp. 550-566 ◽  
Author(s):  
Soumyadeep Ghosh ◽  
Russell T. Johns

Summary Reservoir crudes often contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali/surfactant/polymer (ASP) flooding. The two main advantages of using alkali in enhanced oil recovery (EOR) are to lower cost by injecting a lesser amount of expensive synthetic surfactant and to reduce adsorption of the surfactant on the mineral surfaces. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. For a robust chemical-flood design, a comprehensive understanding of the microemulsion phase behavior in such processes is critical. Chemical-flooding simulators currently use Hand's method to fit a limited amount of measured data, but that approach likely does not adequately predict the phase behavior outside the range of the measured data. In this paper, we present a novel and practical alternative. In this paper, we extend a dimensionless equation of state (EOS) (Ghosh and Johns 2016b) to model ASP phase behavior for potential use in reservoir simulators. We use an empirical equation to calculate the acid-distribution coefficient from the molecular structure of the soap. Key phase-behavior parameters such as optimum salinities and optimum solubilization ratios are calculated from soap-mole-fraction-weighted equations. The model is tuned to data from phase-behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The predictions of the model are in good agreement with measured data.



2005 ◽  
Vol 127 (4) ◽  
pp. 310-317 ◽  
Author(s):  
Shaojun Wang ◽  
Faruk Civan

Asphaltene precipitation and deposition during primary oil recovery and resulting reservoir formation damage are described by a phenomenological mathematical model. This model is applied using experimental data from laboratory core flow tests. The effect of asphaltene deposition on porosity, permeability, and the productivity of vertical wells in asphaltenic-oil reservoirs are investigated by simulation.



1981 ◽  
Vol 21 (06) ◽  
pp. 763-770 ◽  
Author(s):  
Kishor D. Shah ◽  
Don W. Green ◽  
Michael J. Michnick ◽  
G. Paul Willhite ◽  
Ronald E. Terry

Abstract Phase behavior of microemulsions composed of TRS 10-80, brine (10.6 mg/g NaCl), isopropyl alcohol, and mixtures of pure hydrocarbons was studied to determine the location of phase boundaries of the single-phase microemulsion region. Studies were conducted on pseudoternary phase diagrams where the pseudocomponents were isopropanol, brine, and a constant ratio of surfactant to hydrocarbon (S/H). Phase boundaries were determined be the titration method developed by Bowcott and Schulman, which was extended to systems of interest for oil recovery by Dominguez et al.The titration method involves the addition of brine to a single-phase microemulsion until phase separation occurs. Then the system is titrated to transparency by addition of isopropanol. Dominguez et al. demonstrated the applicability of the titration method for systems containing pure alkanes. They found upper and lower phase boundaries (high and low alcohol concentrations) for the microemulsion regions on S/H pseudoternary diagrams that were represented by linear relationships between the volume of alcohol and the volume of brine required to attain a single-phase microemulsion. This region, termed Region 4, bounded by linear phase boundaries, extends over a wide range of brine concentrations including regions of interest to enhanced oil-recovery processes. The research reported in this paper extends the work of Dominguez et al. to mixtures of pure hydrocarbons. The locations of the lower phase boundaries for Region 4 were determined for four types of mixtures prepared with pure hydrocarbons ranging from C6 to C18.In all phase behavior experiments, the lower phase boundary of Region 4 was a straight line when volume of alcohol was plotted against volume of brine. Furthermore, the slope of this phase boundary was found to be a linear function of alkane carbon number (ACN) for pure hydrocarbons and equivalent alkane carbon number (EACN) for mixtures of pure hydrocarbons.The correlation of a property of the phase diagram (the slope of the lower phase boundary) with EACN suggests a new approach to characterization of hydrocarbon/surfactant systems. In our experience, the EACN determined from phase behavior studies is more reproducible than the EACN determined from methods involving measurements of interfacial tensions. This method has potential for characterization of surfactant/hydrocarbon systems for complex mixtures of hydrocarbons, including crude oils. Introduction The design of a surfactant system for an enhanced oil-recovery application typically requires much effort, expense, and time. The surfactant system, usually consisting of a petroleum sulfonate and an alcohol dissolved in a brine solution, must be tailormade for a given crude oil/reservoir brine system where it will be applied. The process in finding the optimal system involves varying the components in the surfactant system in compatibility tests, phase behavior studies, physical property measurements, and displacement tests in both Berea and actual reservoir rock.One of the most important considerations in this screening procedure is matching the sulfonate to the crude oil of interest. This can be difficult since both the sulfonate and the crude oil are complex mixtures of pure components. It would be advantageous if each could be characterized by some physical property. SPEJ P. 763^



Author(s):  
Moilton Franco Junior ◽  
Nattacia Rocha ◽  
Warley Pereira

In this work, Peng-Robinson EOS (equation of state) was chosen to represent liquid phase behavior. Then, regarding the three acids, Lauric, Palmitic and Stearic, bulk modulus coefficients were calculated in three values of pressures (0.1, 1.0 and 2.0 GPa) and a range of temperature of 350-450 K. According to the literature, results for carbon dioxide, bulk modulus in the liquid phase is in the same line for the one in the solid phase considering the temperature dimension. Based on it, in this work, the bulk modulus was estimated at three temperatures for three acids in solid-phase by extrapolating the results in the liquid phase. Despite there are no experimental data available in the literature, these results seem to be consistent with the thermodynamic constraints, and useful discussions were provided.



Sign in / Sign up

Export Citation Format

Share Document