New Technology Allows for Hands-Off Intervention During Cementing Operations Increasing Safety and Operational Efficiency
Abstract The culture of safety within the oil and gas industry has undergone an evolution since the advent of significant E&P operations in the late 1800s. The initial focus on safety was to protect property, not people. This mentality has shifted over time to include a greater focus on the safety of personnel, in parallel with technology developments that have pushed the limits of operators’ and service providers’ abilities to drill and complete more complicated wells. The safety efforts introduced to date have yielded results in every major HS&E category; however, falls and dropped objects continue to be areas in need of improvement. During cementing rig up and operations there are still many manual activities that require working at heights in the derrick. New technological advances have allowed the industry to reduce the number of hands-on activities on the rig and operators have moved to eliminate these activities by automating operations. Man lifting operations are recognized as a high-risk activity and, as such, many rigs require special permitting. During cementing operations, not only are personnel lifted into hazardous positions, but they are usually equipped with potential dropped objects. Some of these objects, if dropped, reach an impact force that could seriously injure or, in worst cases, result in a fatality. During these operations, personnel are also hoisted along with a heavy cement line in very close proximity. This introduces other dangers such as tangling, pinch points, and blunt force trauma. These risks are heavily increased when working in adverse conditions, such as high winds or rough seas. By utilizing a wireless cement line make up device, along with wireless features on a cement head to release the darts/plugs/balls and operate the isolation valves, an operator can eliminate the need for hands-on intervention. This paper will discuss current cement head technologies available to the operator that allow them to improve safety and efficiencies in operational rig time. Three field studies will be presented that detail running cement jobs with all functions related to the wireless attributes of the cement head. The field studies will present the operational efficiencies achieved by utilizing the wireless features compared to the standard manual method. Before the recent introduction of a wireless cementing line make-up device, a wireless cement head still required hands-on intervention to rig up the tools, putting people in high-risk situations.