Effect of Wettability on Vaporization of Hydrocarbon Solvents in Capillary Media

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

Summary Tight rock reservoirs have gained popularity and become a subject of great interest because of their huge recovery potential. A substantial portion of the potential hydrocarbon could be removed from the reservoir by injecting solvent gases [hydrocarbon or carbon dioxide (CO2)] as an enhanced-oil-recovery (EOR) application. Achieving precise modeling of these processes and an accurate description of hydrocarbon dynamics requires a clear understanding of phase-change behavior in a confined (capillary) medium. It was previously shown that early vaporization of liquids could occur in channels that were larger than 1000 nm. The surface wettability plays a critical role in influencing the vaporization and condensation nature in confined systems. This paper studies the influence of the medium wettability on phase-transition temperatures of liquid hydrocarbons in macrochannels (greater than 1000 nm) and nanochannels (less than 500 nm) by using different types of rock samples. The boiling temperature of hydrocarbon solvents was measured in two extreme wetting conditions: (1) strongly water-wet and (2) strongly oil-wet. Boiling temperatures of heptane and octane in sandstone, limestone, and tight sandstone were observed to be lower than their bulk boiling points by 13% (4% in Kelvin units), on average. Altering rock wettability characteristically changes the average hydrocarbon nucleation temperatures, being as critical as the pore size. Changing sandstone’s wettability to strongly oil-wet shifted the average nucleation temperature of heptane and octane by 6% (1.3% in Kelvin units) and 15% (0.8% in Kelvin units), compared with cases before wettability alteration. The experimental outcomes also showed that reducing the solvent adsorption on clays in Berea sandstone lowers the nucleation temperature of heptane and octane from their normal phase-change temperatures by 20% (4.3% in Kelvin units) and 30% (6.5% in Kelvin units). In comparison with the medium wettability alteration, reducing the solvent adsorption had a greater influence on nucleation temperatures. Such a phenomenon shows that molecule-solid interactions have more control of altering the phase behavior of solvents than of medium wettability.

Fuel ◽  
2021 ◽  
Vol 291 ◽  
pp. 119986
Author(s):  
Z. Zhang ◽  
Madhar Sahib Azad ◽  
J.J. Trivedi

2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 818-828 ◽  
Author(s):  
M. Hosein Kalaei ◽  
Don W. Green ◽  
G. Paul Willhite

Summary Wettability modification of solid rocks with surfactants is an important process and has the potential to recover oil from reservoirs. When wettability is altered by use of surfactant solutions, capillary pressure, relative permeabilities, and residual oil saturations change wherever the porous rock is contacted by the surfactant. In this study, a mechanistic model is described in which wettability alteration is simulated by a new empirical correlation of the contact angle with surfactant concentration developed from experimental data. This model was tested against results from experimental tests in which oil was displaced from oil-wet cores by imbibition of surfactant solutions. Quantitative agreement between the simulation results of oil displacement and experimental data from the literature was obtained. Simulation of the imbibition of surfactant solution in laboratory-scale cores with the new model demonstrated that wettability alteration is a dynamic process, which plays a significant role in history matching and prediction of oil recovery from oil-wet porous media. In these simulations, the gravity force was the primary cause of the surfactant-solution invasion of the core that changed the rock wettability toward a less oil-wet state.


2011 ◽  
Vol 236-238 ◽  
pp. 2135-2141
Author(s):  
Qi Cheng Liu ◽  
Yong Jian Liu

Molecular film displacement is a new nanofilm EOR technique. A large number of experiments show that the mechanism of molecular film displacement is different from conventional chemical displacement (polymer, surfactant, alkali and ASP displacement etc). With water solution acting as transfer medium, molecules of the filming agent develop the force to form films through electrostatic interaction, with efficient molecules deposited on the negatively charged rock surface to form ultrathin films at nanometer scale. This change the properties of reservoir surface and the interaction condition with crude oil, making the oil easily be displaced as the pores swept by the injected fluid. Thus oil recovery is enhanced. The mechanism of molecular filming agent mainly includes absorption, wettability alteration, diffusion and capillary imbibition etc.


2014 ◽  
Vol 695 ◽  
pp. 499-502 ◽  
Author(s):  
Mohamad Faizul Mat Ali ◽  
Radzuan Junin ◽  
Nor Hidayah Md Aziz ◽  
Adibah Salleh

Malaysia oilfield especially in Malay basin has currently show sign of maturity phase which involving high water-cut and also pressure declining. In recent event, Malaysia through Petroliam Nasional Berhad (PETRONAS) will be first implemented an enhanced oil recovery (EOR) project at the Tapis oilfield and is scheduled to start operations in 2014. In this project, techniques utilizing water-alternating-gas (WAG) injection which is a type of gas flooding method in EOR are expected to improve oil recovery to the field. However, application of gas flooding in EOR process has a few flaws which including poor sweep efficiency due to high mobility ratio of oil and gas that promotes an early breakthrough. Therefore, a concept of carbonated water injection (CWI) in which utilizing CO2, has ability to dissolve in water prior to injection was applied. This study is carried out to assess the suitability of CWI to be implemented in improving oil recovery in simulated sandstone reservoir. A series of displacement test to investigate the range of recovery improvement at different CO2 concentrations was carried out with different recovery mode stages. Wettability alteration properties of CWI also become one of the focuses of the study. The outcome of this study has shown a promising result in recovered residual oil by alternating the wettability characteristic of porous media becomes more water-wet.


Author(s):  
Tesleem Lawal ◽  
Mingyuan Wang ◽  
Gayan A. Abeykoon ◽  
Francisco J. Argüelles-Vivas ◽  
Ryosuke Okuno

2021 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Abstract Our previous research, honoring interfacial properties, revealed that the wettability state is predominantly caused by phase change—transforming liquid phase to steam phase—with the potential to affect the recovery performance of heavy-oil. Mainly, the system was able to maintain its water-wetness in the liquid (hot-water) phase but attained a completely and irrevocably oil-wet state after the steam injection process. Although a more favorable water-wetness was presented at the hot-water condition, the heavy-oil recovery process was challenging due to the mobility contrast between heavy-oil and water. Correspondingly, we substantiated that the use of thermally stable chemicals, including alkalis, ionic liquids, solvents, and nanofluids, could propitiously restore the irreversible wettability. Phase distribution/residual oil behavior in porous media through micromodel study is essential to validate the effect of wettability on heavy-oil recovery. Two types of heavy-oils (450 cP and 111,600 cP at 25oC) were used in glass bead micromodels at steam temperatures up to 200oC. Initially, the glass bead micromodels were saturated with synthesized formation water and then displaced by heavy-oils. This process was done to exemplify the original fluid saturation in the reservoirs. In investigating the phase change effect on residual oil saturation in porous media, hot-water was injected continuously into the micromodel (3 pore volumes injected or PVI). The process was then followed by steam injection generated by escalating the temperature to steam temperature and maintaining a pressure lower than saturation pressure. Subsequently, the previously selected chemical additives were injected into the micromodel as a tertiary recovery application to further evaluate their performance in improving the wettability, residual oil, and heavy-oil recovery at both hot-water and steam conditions. We observed that phase change—in addition to the capillary forces—was substantial in affecting both the phase distribution/residual oil in the porous media and wettability state. A more oil-wet state was evidenced in the steam case rather than in the liquid (hot-water) case. Despite the conditions, auspicious wettability alteration was achievable with thermally stable surfactants, nanofluids, water-soluble solvent (DME), and switchable-hydrophilicity tertiary amines (SHTA)—improving the capillary number. The residual oil in the porous media yielded after injections could be favorably improved post-chemicals injection; for example, in the case of DME. This favorable improvement was also confirmed by the contact angle and surface tension measurements in the heavy-oil/quartz/steam system. Additionally, more than 80% of the remaining oil was recovered after adding this chemical to steam. Analyses of wettability alteration and phase distribution/residual oil in the porous media through micromodel visualization on thermal applications present valuable perspectives in the phase entrapment mechanism and the performance of heavy-oil recovery. This research also provides evidence and validations for tertiary recovery beneficial to mature fields under steam applications.


2021 ◽  
Author(s):  
Tinuola Udoh

Abstract In this paper, the enhanced oil recovery potential of the application of nanoparticles in Niger Delta water-wet reservoir rock was investigated. Core flooding experiments were conducted on the sandstone core samples at 25 °C with the applications of nanoparticles in secondary and tertiary injection modes. The oil production during flooding was used to evaluate the enhanced oil recovery potential of the nanoparticles in the reservoir rock. The results of the study showed that the application of nanoparticles in tertiary mode after the secondary formation brine flooding increased oil production by 16.19% OIIP. Also, a comparison between the oil recoveries from secondary formation brine and nanoparticles flooding showed that higher oil recovery of 81% OIIP was made with secondary nanoparticles flooding against 57% OIIP made with formation brine flooding. Finally, better oil recovery of 7.67% OIIP was achieved with secondary application of nanoparticles relative to the tertiary application of formation brine and nanoparticles flooding. The results of this study are significant for the design of the application of nanoparticles in Niger Delta reservoirs.


Sign in / Sign up

Export Citation Format

Share Document