Cellulose Nanocrystal Switchable Gel for Improving CO2 Sweep Efficiency in Enhanced Oil Recovery and Gas Storage

2020 ◽  
Author(s):  
Ali Telmadarreie ◽  
Christopher Johnsen ◽  
Steven Bryant
2021 ◽  
Vol 73 (11) ◽  
pp. 58-59
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201609, “Cellulose Nanocrystal Switchable Gel for Improving CO2 Sweep Efficiency in Enhanced Oil Recovery and Gas Storage,” by Ali Telmadarreie, University of Calgary and Cnergreen; Christopher Johnsen, University of Calgary; and Steven Bryant, University of Calgary and Cnergreen, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, 5–7 October. The paper has not been peer reviewed. The entanglement of biopolymers is a well-known phenomenon that, when controlled, can result in a smart fluid with strong gelation properties. The authors write that, when a suitable salt is incorporated into the cellulose nanocrystal (CNC), the fluids undergo gelation upon contact with bulk-phase carbon dioxide (CO2) but remain a flowing liquid otherwise. In this study, this composition-selective trigger was applied to improve sweep efficiency in CO2 enhanced oil recovery (EOR) and sequestration. Introduction Hydrogels are hydrophilic structures that swell when hydrated and have various applications in industry. Hydrogels are of interest in EOR because of their ability to respond to stimuli such as pH, temperature, light, and ionic strength. CNCs are nanoparticles derived from cellulose, one of the more sustainable natural resources available. CNC hydrogels could have specific applications as a solution to media het-erogeneity and poor gas-sweep efficiency. The hydrogels can be tuned to set over time, allowing the intentional placement of gels into already-swept areas of a reservoir. CNC hydrogels are unique in that they can be formed when contacted with CO2 and broken by the application of nitrogen (N2) gas. The pH of the solution will be increased as the nitrogen partitions across the gel, reversing the CO2 reaction. This gives the gel-forming solution the added benefit of being transmittable throughout a reservoir. Material and Procedure Spray-dried CNCs with an average length of 100–200 nm and a width of 15 nm were used. Imidazole was used as the salt mixed with water and CNC suspension to create a pH-triggered gel system. CO2 gas and N2 gas were used as received. Mineral oil with a viscosity of approximately 20 cp was used at the oil phase. Solution preparation, and the process for gel strength in bulk testing, are provided in the complete paper. All tests were performed at a pressure of 400 psi and an ambient temperature of 21°C. Two sets of flow experiments were performed. The first included flow in a single sandpack saturated with water to investigate the in-situ gelation and reversibility of the gel. The second set used a dual-sandpack system. The shorter sandpack with higher permeability was saturated with water to create a path of less resistance compared with the longer sandpack with lower permeability saturated with viscous oil. Further details of these experiments are provided in the complete paper.


2021 ◽  
pp. 014459872098020
Author(s):  
Ruizhi Hu ◽  
Shanfa Tang ◽  
Musa Mpelwa ◽  
Zhaowen Jiang ◽  
Shuyun Feng

Although new energy has been widely used in our lives, oil is still one of the main energy sources in the world. After the application of traditional oil recovery methods, there are still a large number of oil layers that have not been exploited, and there is still a need to further increase oil recovery to meet the urgent need for oil in the world economic development. Chemically enhanced oil recovery (CEOR) is considered to be a kind of effective enhanced oil recovery technology, which has achieved good results in the field, but these technologies cannot simultaneously effectively improve oil sweep efficiency, oil washing efficiency, good injectability, and reservoir environment adaptability. Viscoelastic surfactants (VES) have unique micelle structure and aggregation behavior, high efficiency in reducing the interfacial tension of oil and water, and the most important and unique viscoelasticity, etc., which has attracted the attention of academics and field experts and introduced into the technical research of enhanced oil recovery. In this paper, the mechanism and research status of viscoelastic surfactant flooding are discussed in detail and focused, and the results of viscoelastic surfactant flooding experiments under different conditions are summarized. Finally, the problems to be solved by viscoelastic surfactant flooding are introduced, and the countermeasures to solve the problems are put forward. This overview presents extensive information about viscoelastic surfactant flooding used for EOR, and is intended to help researchers and professionals in this field understand the current situation.


Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6520
Author(s):  
Pablo Druetta ◽  
Francesco Picchioni

The traditional Enhanced Oil Recovery (EOR) processes allow improving the performance of mature oilfields after waterflooding projects. Chemical EOR processes modify different physical properties of the fluids and/or the rock in order to mobilize the oil that remains trapped. Furthermore, combined processes have been proposed to improve the performance, using the properties and synergy of the chemical agents. This paper presents a novel simulator developed for a combined surfactant/polymer flooding in EOR processes. It studies the flow of a two-phase, five-component system (aqueous and organic phases with water, petroleum, surfactant, polymer and salt) in porous media. Polymer and surfactant together affect each other’s interfacial and rheological properties as well as the adsorption rates. This is known in the industry as Surfactant-Polymer Interaction (SPI). The simulations showed that optimum results occur when both chemical agents are injected overlapped, with the polymer in the first place. This procedure decreases the surfactant’s adsorption rates, rendering higher recovery factors. The presence of the salt as fifth component slightly modifies the adsorption rates of both polymer and surfactant, but its influence on the phase behavior allows increasing the surfactant’s sweep efficiency.


SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 249-259 ◽  
Author(s):  
Yunshen Chen ◽  
Amro S. Elhag ◽  
Benjamin M. Poon ◽  
Leyu Cui ◽  
Kun Ma ◽  
...  

Summary To improve sweep efficiency for carbon dioxide (CO2) enhanced oil recovery (EOR) up to 120°C in the presence of high-salinity brine (182 g/L NaCl), novel CO2/water (C/W) foams have been formed with surfactants composed of ethoxylated amine headgroups with cocoalkyl tails. These surfactants are switchable from the nonionic (unprotonated amine) state in dry CO2 to cationic (protonated amine) in the presence of an aqueous phase with a pH less than 6. The high hydrophilicity in the protonated cationic state was evident in the high cloudpoint temperature up to 120°C. The high cloud point facilitated the stabilization of lamellae between bubbles in CO2/water foams. In the nonionic form, the surfactant was soluble in CO2 at 120°C and 3,300 psia at a concentration of 0.2% (w/w). C/W foams were produced by injecting the surfactant into either the CO2 phase or the brine phase, which indicated good contact between phases for transport of surfactant to the interface. Solubility of the surfactant in CO2 and a favorable C/W partition coefficient are beneficial for transport of surfactant with CO2-flow pathways in the reservoir to minimize viscous fingering and gravity override. The ethoxylated cocoamine with two ethylene oxide (EO) groups was shown to stabilize C/W foams in a 30-darcy sandpack with NaCl concentrations up to 182 g/L at 120°C and 3,400 psia, and foam qualities from 50 to 95%. The foam produces an apparent viscosity of 6.2 cp in the sandpack and 6.3 cp in a 762-μm-inner-diameter capillary tube (downstream of the sandpack) in contrast with values well below 1 cp without surfactant present. Moreover, the cationic headgroup reduces the adsorption of ethoxylated alkyl amines on calcite, which is also positively charged in the presence of CO2 dissolved in brine. The surfactant partition coefficients (0 to 0.04) favored the water phase over the oil phase, which is beneficial for minimizing losses of surfactant to the oil phase for efficient surfactant usage. Furthermore, the surfactant was used to form C/W foams, without forming stable/viscous oil/water (O/W) emulsions. This selectivity is desirable for mobility control whereby CO2 will have low mobility in regions in which oil is not present and high contact with oil at the displacement front. In summary, the switchable ethoxylated alkyl amine surfactants provide both high cloudpoints in brine and high interfacial activities of ionic surfactants in water for foam generation, as well as significant solubilities in CO2 in the nonionic dry state for surfactant injection.


Author(s):  
Long Yu ◽  
Qian Sang ◽  
Mingzhe Dong

Reservoir heterogeneity is the main cause of high water production and low oil recovery in oilfields. Extreme heterogeneity results in a serious fingering phenomenon of the displacing fluid in high permeability channels. To enhance total oil recovery, the selective plugging of high permeability zones and the resulting improvement of sweep efficiency of the displacing fluids in low permeability areas are important. Recently, a Branched Preformed Particle Gel (B-PPG) was developed to improve reservoir heterogeneity and enhance oil recovery. In this work, conformance control performance and Enhanced Oil Recovery (EOR) ability of B-PPG in heterogeneous reservoirs were systematically investigated, using heterogeneous dual sandpack flooding experiments. The results show that B-PPG can effectively plug the high permeability sandpacks and cause displacing fluid to divert to the low permeability sandpacks. The water injection profile could be significantly improved by B-PPG treatment. B-PPG exhibits good performance in profile control when the high/low permeability ratio of the heterogeneous dual sandpacks is less than 7 and the injected B-PPG slug size is between 0.25 and 1.0 PV. The oil recovery increment enhanced by B-PPG after initial water flooding increases with the increase in temperature, sandpack heterogeneity and injected B-PPG slug size, and it decreases slightly with the increase of simulated formation brine salinity. Choosing an appropriate B-PPG concentration is important for B-PPG treatments in oilfield applications. B-PPG is an efficient flow diversion agent, it can significantly increase sweep efficiency of displacing fluid in low permeability areas, which is beneficial to enhanced oil recovery in heterogeneous reservoirs.


2021 ◽  
Author(s):  
Bogdan-George Davidescu ◽  
Mathias Bayerl ◽  
Christoph Puls ◽  
Torsten Clemens

Abstract Enhanced Oil Recovery pilot testing aims at reducing uncertainty ranges for parameters and determining operating conditions which improve the economics of full-field deployment. In the 8.TH and 9.TH reservoirs of the Matzen field, different well configurations were tested, vertical versus horizontal injection and production wells. The use of vertical or horizontal wells depends on costs and reservoir performance which is challenging to assess. Water cut, polymer back-production and pressures are used to understand reservoir behaviour and incremental oil production, however, these data do not reveal insights about changes in reservoir connectivity owing to polymer injection. Here, we used consecutive tracer tests prior and during polymer injection as well as water composition to elucidate the impact of various well configurations on sweep efficiency improvements. The results show that vertical well configuration for polymer injection and production leads to substantial acceleration along flow paths but less swept volume. Polymer injection does not only change the flow paths as can be seen from the different allocation factors before and after polymer injection but also the connected flow paths as indicated by a change in the skewness of the breakthrough tracer curves. For horizontal wells, the data shows that in addition to acceleration, the connected pore volume after polymer injection is substantially increased. This indicates that the sweep efficiency is improved for horizontal well configurations after polymer injection. The methodology leads to a quantitative assessment of the reservoir effects using different well configurations. These effects depend on the reservoir architecture impacting the changes in sweep efficiency by polymer injection. Consecutive tracer tests are an important source of information to determine which well configuration to be used in full-field implementation of polymer Enhanced Oil Recovery.


Sign in / Sign up

Export Citation Format

Share Document