New Formulation of Tertiary Amines for Thermally Stable and Cost-Effective Chemical Additive: Synthesis Procedure and Displacement Tests for High-Temperature Tertiary Recovery in Steam Applications

2020 ◽  
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli
SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Randy Agra Pratama ◽  
Tayfun Babadagli

Summary A newly formulated chemical additive from a group of amines has been tested and applied to in-situheavy oil thermal recovery. Switchable-hydrophilicity chemical additives were successfully synthesized from N,N-dimethylcyclohexylamine in the form of homogeneous and hydrophilic solution. Fundamentally, tertiary amines comprise functional groups of hydrophilic and hydrophobic components. These unique features enable this chemical additive to wet both water and heavy oil, yielding potential interfacial tension (IFT) improvement. Furthermore, the reversible chemical reaction of this chemical additive yields both positive and negative ions. An ion pair formed due to the adsorption of cations—[C8H17NH+]—on the surface of heavy oil, whereas the anions—[HCO3−]—promoted solid-phase surface charge modification, therefore, resulting in the repulsive forces between heavy oil and the rock surface—substantially improving water-wetness and restoring an irreversible wettability alteration due to the phase change phenomenon during steam injection. In this research, two types of heavy oil acquired from a field in western Alberta encompassing the viscosity of 5,616  and 46,140 cp at 25°C was utilized in each experiment. All experiments were performed and measured at high-pressure, high-temperature (HPHT) steam conditions up to 200 psi and 200°C. We perceived that favorable IFT reduction was achieved, and irreversible wettability could be restored after combining switchable-hydrophilicity tertiary amines (SHTA) with steam as a result of the solid-phase surface charge modification to be more negatively charged. Phase distribution/residual oil in the porous media developed after steam injection was able to be favorably recovered, indicating that capillary forces could be reduced. Consequently, more than 80% of the residual oil could be recuperated post-SHTA injection, presenting favorable oil recovery performance. In addition to this promising evidence, SHTA could be potentially recovered by switching its reversible chemical reaction to be in hydrophobic form, hence, promoting this chemical additive to be both reusable and more economically effective. Comprehensive studies and analyses on interfacial properties, phase distribution in porous media, and recovery performance exhibit essential points of view in further evaluating the potential of SHTA for tertiary recovery improvement. Valuable substantiations and findings provided by our research present useful information and recommendations for fields with steam injection applications.


2007 ◽  
Author(s):  
Ghaithan A. Al-Muntasheri ◽  
Pacelli Lidio Jose Zitha ◽  
Hisham A. Nasr-El-Din

Author(s):  
Zai-Wei Li ◽  
Xiao-Zhou Liu ◽  
Hong-Yao Lu ◽  
Yue-Lei He

The deformation of longitudinally coupled prefabricated slab track (LCPST) due to high temperature may lead to a reduction in ride comfort and safety in high-speed rail (HSR) operation. It is thus critical to understand and track the development of such defects. This study develops an online monitoring system to analyze LCPST deformation at different slab depths under various temperatures. The trackside system, powered by solar energy with STM8L core that is ultra-low in energy consumption, is used to collect data of LCPST deformation and temperature level uninterruptedly. With canonical correlation analysis, it is found that LCPST deformation presents similar periodic variation to yearly temperature fluctuation and large longitudinal force may be generated as heat accumulates in summer, thereby causing track defects. Then the distribution of temperature and deformation data is categorized based on fuzzy c-means clustering. Through the distribution analysis, it is suggested that slab inspection can be shortened to 6 hours, i.e. from 10:00 am to 4:00 pm, reducing 14.3% track inspection workload from the current practice. The price of workload reduction is only a 2% chance of missed detection of slab deformation. The finding of this research can be used to enhance LCPST monitoring efficiency and reduce interruption to HSR operation, which is an essential step in promoting reliable and cost-effective track service.


2016 ◽  
Vol 89 ◽  
pp. 1310-1314 ◽  
Author(s):  
Seyed Amir Paknejad ◽  
Ali Mansourian ◽  
Yohan Noh ◽  
Khalid Khtatba ◽  
Samjid H. Mannan

2018 ◽  
Vol 226 ◽  
pp. 289-294 ◽  
Author(s):  
Seunghoe Choe ◽  
Byung-Seok Lee ◽  
Min Kyung Cho ◽  
Hyoung-Juhn Kim ◽  
Dirk Henkensmeier ◽  
...  

2021 ◽  
Vol 180 ◽  
pp. 109190
Author(s):  
Yu Yin ◽  
Qiyang Tan ◽  
Yitian Zhao ◽  
Qiang Sun ◽  
Zhiming Shi ◽  
...  

2021 ◽  
Author(s):  
Ebikebena M. Ombe ◽  
Ernesto G. Gomez ◽  
Aldia Syamsudhuha ◽  
Abdullah M. AlKwiter

Abstract This paper discusses the successful deployment of Multi-stage Fracturing (MSF) completions, composed of novel expandable steel packers, in high pressure, high temperature (HP/HT) horizontal gas wells. The 5-7/8" horizontal sections of these wells were drilled in high pressure, high temperature gas bearing formations. There were also washed-outs & high "dog-legs" along their wellbores, due to constant geo-steering required to keep the laterals within the hydrocarbon bearing zones. These factors introduced challenges to deploying the conventional MSF completion in these laterals. Due to the delicate nature of their packer elastomers and their susceptibility to degradation at high temperature, these conventional MSF completions could not be run in such hostile down-hole conditions without the risk of damage or getting stuck off-bottom. This paper describes the deployment of a novel expandable steel packer MSF completion in these tough down-hole conditions. These expandable steel packers could overcome the challenges mentioned above due to the following unique features: High temperature durability. Enhanced ruggedness which gave them the ability to be rotated & reciprocated during without risk of damage. Reduced packer outer diameter (OD) of 5.500" as compared to the 5.625" OD of conventional elastomer MSF packers. Enhanced flexibility which enabled them to be deployed in wellbores with high dog-leg severity (DLS). With the ability to rotate & reciprocate them while running-in-hole (RIH), coupled with their higher annular clearance & tolerance of high temperature, the expandable steel packers were key to overcoming the risk of damaging or getting stuck with the MSF completion while RIH. Also, due to the higher setting pressure of the expandable steel packers when compared to conventional elastomer packers, there was a reduced risk of prematurely setting the packers if high circulating pressure were encountered during deployment. Another notable advantage of these expandable packers is that they provided an optimization opportunity to reduce the number of packers required in the MSF completion. In a conventional MSF completion, two elastomer packers are usually required to ensure optimum zonal isolation between each MSF stage. However, due to their superior sealing capability, only one expandable steel packer is required to ensure good inter-stage isolation. This greatly reduces the number of packers required in the MSF completion, thereby reducing its stiffness & ultimately reducing the probability of getting stuck while RIH. The results of using these expandable steel packers is the successful deployment of the MSF completions in these harsh down-hole conditions, elimination of non-productive time associated with stuck or damaged MSF completion as well as the safe & cost-effective completion in these critical horizontal gas wells.


Solar Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 413-417
Author(s):  
Dawei Ding ◽  
Wenjing Wei ◽  
Xiaoping He ◽  
Shujiang Ding

Author(s):  
Taylor Robertson ◽  
Xiao Huang ◽  
Richard Kearsey

Particulate enhanced oxide ceramics are an attractive class of materials for high temperature applications because they possess many of the high temperature capabilities of monolithic ceramics but also have enhanced mechanical properties due to their multi-phase structure. High temperature structural ceramics have the potential to operate above at higher temperatures than current super alloys; however, processing costs and lack of reliability has prevented their commercialization. In this work a particulate reinforced ceramic composed entirely of oxides is proposed as a more oxidation resistant and cost effective structural ceramic which will have potentially improved resistance to environmental degradation. Zirconia Toughened Alumina (ZTA), as the matrix, has enhanced toughness, strength, and creep resistance over single phase alumina or zirconia. ZTA can further be strengthened by the incorporation of SiC type whiskers; however, these whiskers are prone to deterioration at temperatures above 1000°C through oxidation. In this work Mullite, in whisker form, is proposed as the reinforcement to ZTA due to its stability in oxidizing atmospheres at high temperatures. Mullite whiskers are grown through the molten salt method and incorporated into the ZTA matrix using a colloidal processing route in this study. The composition of the ZTA matrix is 15wt% Yttria stabilized Zirconia (YSZ), 85 wt% α-Alumina. The Mullite whiskers make up 20 vol% of the composite, yielding a final composition of 71.6 wt% Alumina, 12.7 wt% YSZ, and 15.6 wt% Mullite. The green compacts are fired in a two stage sintering process incorporating atmospheric pressure sintering to 92% density (seal the pore channels) and then hot isostatic pressure pressing (HIP) to increase the density. Samples have been tested for room temperature flexural strength using a three point bend test and fracture toughness through Gong’s Vickers indentation method. The results of microstructure study and mechanical tests are reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document