A New Method to Identify and Quantify Hydraulic Communication between Isolated Reservoir Systems Using Pressure-Transient Data

2021 ◽  
Author(s):  
Hasan A. Nooruddin ◽  
N. M. Anisur Rahman

Abstract A new analytical workflow that uses pressure-transient data to characterize connectivity between two originally non-communicating reservoir zones is presented. With this technique, hydraulic communication is clearly identified and corresponding fluid crossflow rates accurately quantified. It is applicable to a wide range of communication mechanisms, including inactive commingled-completion wells, conductive fractures and faults, in addition to behind-casing completion problems. The impact of interference is also captured by handling an unlimited number of wells and communicating media. The solution uses pressure-transient data effectively to diagnose communication and estimate the amount of transported fluids. The new formulation is a general formulation for handling an unlimited number of producing wells and communicating media, which helps analyze pressure responses under the influence of interference. The reservoir system under consideration is assumed to be two-dimensional with two initially-isolated reservoir zones, intersected by an arbitrary number of wells, part of which are active producers while others can be penetrating wells with commingled completion, in addition to other communicating media. The well test duration is assumed long enough for the pressure-transient data to be affected by fluid communication. To demonstrate the applicability of the new model, a synthetic case study is presented to diagnose a fluid-communication mechanism. The system under consideration consists of two isolated reservoirs and two wells: a single producer completed in the top reservoir in which pressure responses are measured, and an offset well connecting both reservoirs through a fluid communication mechanism. Using the model, type-curves have been utilized to diagnose the hydraulic communication in the offset well. The connectivity of the communication channel in the offset well is also estimated by matching the pressure-transient responses of the model with the measured data. The rate of crossflow between the two reservoirs is also quantified as a function of time. It is observed from the log-log plot that higher connectivity values of the cement sheath causes a steeper merging ramp in the transition region, following a period dominated by the producing reservoir. Although the rate of crossflow depends on the magnitude of the connectivity, it is observed that there is an upper limit controlled by the rock and fluid properties of the individual reservoirs. In addition, the pressure regime at the location of the offset well plays an important role in the rate of crossflow. This study presents a novel analytical approach to detect communication from pressure-transient data, and to quantify the magnitude of crossflow rates between reservoir zones. The formulation captures the influence of interference between wells caused by production. While complementing diagnostic information from other sources to confirm fluid movement from isolated zones, the method also quantifies the connectivity of the communicating media, and the amount of crossflow rates as a continuous function of time.

SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 186-201 ◽  
Author(s):  
Mei Han ◽  
Gaoming Li ◽  
Jingyi Chen

Summary The pressure-transient well-test data can be used to determine the thickness-weighted average permeability in a multilayer reservoir. Injection- or production-profile logs (layer rates), if available, may be used to further quantify the layer properties. This paper explores the possibility of the use of microseismic data in place of injection-/production-profile logs for layered-reservoir characterization. The microseismic first-arrival times from the perforation-timing shots of the test well to monitor wells can only resolve the average velocity along its wavepath but are more sensitive to the layer (or region) with high wave velocity (low productivity). On the contrary, the pressure-transient data are more sensitive to the properties of the high-productivity (high-permeability) layers. Therefore, these two types of data are complementary in reservoir characterization. In this paper, we assimilate these two types of data by use of the state-of-the-art ensemble-Kalman-filter (EnKF) method. Layered-homogeneous- and layered-heterogeneous-reservoir examples verified the complementary nature of these two types of data. The porosities and permeabilities in the layered reservoir obtained after assimilating both types of data are comparable with assimilating pressure-transient and layer-rate data. EnKF is a stochastic process, and the final results may depend on the initial ensemble because of sampling errors, sample size, and nonlinearity of the problem. In this paper, we generated 10 different ensembles for each example for better uncertainty quantification. The paper shows that assimilating pressure-transient data only will yield biased estimates of layered-reservoir properties, whereas assimilating both pressure and microseismic data improves the reservoir-property estimation and reservoir-prediction capabilities.


2005 ◽  
Vol 8 (03) ◽  
pp. 248-254 ◽  
Author(s):  
Olubusola O. Thomas ◽  
Rajagopal S. Raghavan ◽  
Thomas N. Dixon

Summary This paper discusses specific issues encountered when pressure tests are analyzed in reservoirs with complex geological properties. These issues relate to questions concerning the methodology of scaleup, the degree of aggregation, and the reliability of conventional methods of analysis. The paper shows that if we desire to use pressure-transient analysis to determine more complex geological features such as connectivity and widths of channels, we need a model that incorporates reservoir heterogeneity. This complexity can lead to significantly more computational effort in the analysis of the pressure transient. The paper demonstrates that scaleup criteria, based on steady-state procedures, are inadequate to capture transient pressure responses. Furthermore, the number of layers needed to match the transient response may be significantly greater than the number of layers needed for a reservoir-simulation study. The use of models without a sufficient number of layers may lead to interpretations that are in significant error. The paper compares various vertical aggregation methods to coarsen the fine-grid model. The pressure-derivative curve is used as a measure of evaluating the adequacy of the scaleup procedure. Neither the use of permeability at a wellbore nor the average layer permeability as criteria for the aggregation was adequate to reduce the number of layers significantly. Introduction The objectives of this paper are to demonstrate the impact of the detailed and small-scale heterogeneities of a formation on the flow characteristics that are obtained from a pressure test and how those heterogeneities affect the analysis of the pressure test. The literature recognizes that special scaleup procedures are required in the vicinity of wells located in heterogeneous fields. Our work demonstrates that these procedures apply only to rather small changes in pressure over time and are usually inadequate to meet objectives for history-matching well tests. Using a fine-scale geological model derived by geological and geophysical techniques, this work systematically examines the interpretations obtained by various aggregation and scaleup techniques. We will demonstrate that unless care is taken, the consequences of too much aggregation may lead to significant errors on decisions concerning the value of a reservoir. Current scaleup techniques presume that spatial (location of boundaries, location of faults, etc.) variables are maintained. In analyzing a well test, however, one of our principal objectives is to determine the relationship between the well response and geometrical variables. We show that a limited amount of aggregation will preserve the spatial and petrophysical relationships we wish to determine. At this time, there appears to be no method available to determine the degree of scaleup a priori. Because the objective of well testing is to estimate reservoir properties, the scaleup process needs to be made a part of the history-matching procedure. By assuming a truth case, we show that too much vertical aggregation may lead to significant errors. Comparisons with traditional analyses based on analytical techniques are made. Whenever an analytical model is used in the analysis, unless otherwise stated, we use a single-layer-reservoir solution.


1982 ◽  
Vol 22 (03) ◽  
pp. 309-320 ◽  
Author(s):  
Constance W. Miller ◽  
Sally M. Benson ◽  
Michael J. O'Sullivan ◽  
Karsten Pruess

Abstract A method of designing and analyzing pressure transient well tests of two-phase (steam/water) reservoirs is given. Wellbore storage is taken into account, and the duration of it is estimated. It is shown that the wellbore flow can dominate the downhole pressure signal completely such that large changes in the downhole pressure that might be expected because of changes in kinematic mobility are not seen. Changes in the flowing enthalpy from the reservoir can interact with the wellbore flow so that a temporary plateau in the downhole transient curve is measured. Application of graphical and nongraphical methods to determine reservoir parameters from drawdown tests is demonstrated. Introduction Pressure transient data analysis is the most common method of obtaining estimates of the in-situ reservoir properties and the wellbore condition. Conventional graphical analysis techniques require that. for a constant flowrate well test in an infinite aquifer, a plot of the downhole pressure vs. log time yields a straight line after wellbore storage effects are over. The slope of that line is inversely proportional to the transmissivity (kh/u) of the reservoir. The extrapolated intercept of this line with the pressure axis at a specified time (1 hour or 1 second depending on the units used) gives the factor 0 Cth(re2), which is used to calculate the skin value of a well. In this study, the effects of a two-phase steam/water mixture in the reservoir and/or the wellbore on pressure transient data have been investigated. There have been a number of attempts to extend conventional testing and analysis techniques to two-phase geothermal reservoirs including drawdown analysis by Garg and Pritchett, Garg, Grant, and Moench and Atkinson. Pressure buildup analysis has been investigated by Sorey et al. To solve the diffusion equation that governs the pressure change in a two-phase reservoir analytically, it is necessary to make a number of simplifying assumptions. One assumption is that the fluid compressibility in the reservoir is initially uniform and remains uniform throughout the test. With this approach, it can be shown that a straight line on a pressure vs. log time plot will be obtained, the slope being inversely proportional to the total kinematic mobility When conducting a field test it is rarely possible to maintain the uniform saturation distribution in the reservoir required for that type of analysis to be applicable. In addition, the very high compressibility of the two-phase fluid creates wellbore storage of very long duration. Since most of the available instrumentation for hot geothermal wells (greater than 200C) can withstand geothermal environments for only limited periods, long-duration wellbore storage further complicates data analysis. Thus numerical simulation techniques must be used to study well tests to determine the best method of testing two-phase reservoirs. This work investigates and defines more thoroughly the well/reservoir system when the reservoir or wellbore is filled with a two-phase fluid. Four examples are considered:a single-phase hot water reservoir connected to a partially two-phase wellbore,a hot water reservoir that becomes two-phase during the test,a two-phase liquid-dominated reservoir, anda two-phase vapor-dominated reservoir. State-of-the-art analysis techniques are applied to pressure transient data after wellbore storage effects have ended. In the first example, a nongraphical method of analysis is discussed, which is applicable at early times when wellbore storage effects still dominate the pressure response. Note that our analysis has been done for a two-phase homogeneous, nonfractured reservoir. Previous studies of well test methods for two-phase reservoirs have been restricted to this case. SPEJ P. 309^


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yong-Gang Duan ◽  
Ke-Yi Ren ◽  
Quan-Tang Fang ◽  
Ming-Qiang Wei ◽  
Morteza Dejam ◽  
...  

Carbonate reservoirs usually have strong anisotropy. Oil and gas recovery from fractured reservoirs is highly challenging due to complicated mechanisms involved in production from these reservoirs. A horizontal well completed in these reservoirs may extend through multiple zones, including homogeneous, dual-porosity, and triple-porosity formations. Traditional well test models assume that the entire length of a horizontal or multilateral well remains in the same formation with uniform properties. A well test model for pressure transient analysis of horizontal wells extending through a carbonate reservoir consisting of natural fractures, rock matrix, and vugs with different properties is presented in this study. The focus of this study is on dual-porosity (fracture-matrix) and triple-porosity (fracture-matrix-vug) reservoirs, considering the pseudosteady interporosity flows from rock matrix and vugs into fractures. A multizone triple-porosity model was established and solved by using the point source function, Green’s function, and coupling of multiple reservoir sections. The corresponding type curves were developed, and sensitivity analysis was carried out. The type curves of flow stage division reveal that a horizontal well traversing a three-section reservoir including homogeneous, dual-porosity (fracture-matrix)/triple-porosity (fracture-vug-matrix), and homogeneous sections identifies the stages of pseudosteady interporosity flow from matrix and vug into fracture, fracture pseudoradial flow, system linear flow, system pseudoradial flow, and pseudosteady flow occur in sequence. The greater the difference of permeability between the dual-porosity/triple-porosity section and the two homogeneous sections, the more obvious the interporosity flow on the pressure derivative curve. This approach satisfies the need for pressure transient analysis for a horizontal well that traverses two or more regions with distinct properties in heterogeneous carbonate reservoirs.


2009 ◽  
Vol 8 (1) ◽  
Author(s):  
Chalimah .

eamwork is becoming increasingly important to wide range of operations. It applies to all levels of the company. It is just as important for top executives as it is to middle management, supervisors and shop floor workers. Poor teamwork at any level or between levels can seriously damage organizational effectiveness. The focus of this paper was therefore to examine whether leadership practices consist of team leader behavior, conflict resolution style and openness in communication significantly influenced the team member’s satisfaction in hotel industry. Result indicates that team leader behavior and the conflict resolution style significantly influenced team member satisfaction. It was surprising that openness in communication did not affect significantly to the team members’ satisfaction.


2021 ◽  
Author(s):  
Ekaterina Mosolova ◽  
Dmitry Sosin ◽  
Sergey Mosolov

During the COVID-19 pandemic, healthcare workers (HCWs) have been subject to increased workload while also exposed to many psychosocial stressors. In a systematic review we analyze the impact that the pandemic has had on HCWs mental state and associated risk factors. Most studies reported high levels of depression and anxiety among HCWs worldwide, however, due to a wide range of assessment tools, cut-off scores, and number of frontline participants in the studies, results were difficult to compare. Our study is based on two online surveys of 2195 HCWs from different regions of Russia during spring and autumn epidemic outbreaks revealed the rates of anxiety, stress, depression, emotional exhaustion and depersonalization and perceived stress as 32.3%, 31.1%, 45.5%, 74.2%, 37.7% ,67.8%, respectively. Moreover, 2.4% of HCWs reported suicidal thoughts. The most common risk factors include: female gender, nurse as an occupation, younger age, working for over 6 months, chronic diseases, smoking, high working demands, lack of personal protective equipment, low salary, lack of social support, isolation from families, the fear of relatives getting infected. These results demonstrate the need for urgent supportive programs for HCWs fighting COVID-19 that fall into higher risk factors groups.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


2019 ◽  
Vol 70 (10) ◽  
pp. 3738-3740

The Tonsillectomy in children or adults is an intervention commonly encountered in the ENT (Ear Nose and Throat) and Head and Neck surgeon practice. The current tendency is to perform this type of surgery in major ambulatory surgery centers. Two objectives are thus pursued: first of all, the increase of the patient quality of life through the reintegration into the family as quickly as possible and secondly, the expenses associated with continuous hospitalization are reduced. Any tertiary (multidisciplinary) sleep center must ensure the complete diagnosis and treatment (including surgery) of sleep respiratory disorders. Under these conditions the selection of patients and especially the implementation of the specific protocols in order to control the postoperative complications it becomes essential. The present paper describes our experience of tonsillectomy as treatment for selected patients with chronic rhonchopathy (snoring) and mild to moderate obstructive sleep apnoea. It was presented the impact of antibiotics protocols in reducing the main morbid outcomes following tonsillectomy, in our day surgery center. The obtained results can also be a prerequisite for the integrative approach of the patients with sleep apnoea who were recommended surgical treatment. Considering the wide range of therapeutic modalities used in sleep apnoea, each with its specific advantages and disadvantages, more extensive and multicenter studies are needed. Keywords: post-tonsillectomy morbidity, day surgery center, sleep disorders


Sign in / Sign up

Export Citation Format

Share Document