A Novel Self-Photodegradation Drilling Fluids Under Near-Infrared Light Irradiation with Preferable Wellbore Stability

2021 ◽  
Author(s):  
Jiafeng Jin ◽  
Kaihe Lv ◽  
Jinsheng Sun ◽  
Yingrui Bai ◽  
Jingping Liu ◽  
...  

Abstract The ever-mounting drilling operations of the petroleum industry has been accompanied by tremendous wasted drilling fluid, Polycyclic Aromatic Hydrocarbons (PAHs) in which pose a huge threat to the health of human and ecosystem. Varying approaches have been proposed to remediate the damage caused by wasted drilling fluid, among which photocatalysis has been one of the most promising approaches for organic contaminants removal. The latest investigation shows that Bi2WO6 decorated on hydrophobic CNT can remove up to 80 % organic contaminant within a short time, exhibiting a preferable photocatalytic performance. Moreover, this hydrophobic CNT can play a vital role in stabilizing the wellbore due to its excellent water repellent. The objective of the study was to find out the effect of Bi2WO6 modified hydrophobic CNT on the PAHs photodegradation and wellbore stability in the process of drilling. Bi2WO6 as a near-infrared driven photocatalyst has attracted worldwide attention due to its preferable oxygen vacancy and quantum efficiency. However, the application of Bi2WO6 was impeded by the low migration efficiency of photo-generated carriers. The combination of Bi2WO6 and composite with good conductivity has been an effective method to resolve this problem. The instability of wellbore caused by shale hydration during oil and gas drilling operations also brings a huge challenge. In this study, a photocatalyst with wellbore stabilization capacity is achieved by hydrophobic CNT modified via Bi2WO6 sheet with nano-size. The fluid loss and wettability property were measured to evaluate the wellbore stabilization capacity of this novel agent. Meanwhile, photodegradation experiments and pathway analysis were conducted to evaluate the effect of photodegradation by Bi2WO6/CNT on the organic contaminants. Data of photodegradation indicated that the PAHs can be degraded up to 80% after treated by Bi2WO6/CNT, the migration efficiency of photogenerated carriers improved significantly. A slight decrease in fluid loss and distinctive increase in viscosity can be observed after treated with 0.3% Bi2WO6/CNT solution. The results of the rheology test verified that the photocatalyst has little effect on the rheological properties of drilling fluid. The result of SEM indicated that this novel Bi2WO6/CNT composite with a bombax structure can absorb preferentially organic contaminants, which is good at in-situ photodegradation and prevention of water invasion. To sum up, PAHs in wasted drilling fluids can be photodegraded by the novel Bi2WO6 nano-sheet modified CNT, and the stability of wellbore can also be significantly enhanced due to wettability alteration.

2018 ◽  
Author(s):  
Ζήσης Βρύζας

Η γεώτρηση αποτελεί την πλέον δαπανηρή εργασία σε μια καμπάνια εξεύρεσης και παραγωγής υδρογονανθράκων. Πέραν αυτού συνιστά και την μοναδική διεργασία που δίνει τη δυνατότητα ακριβούς προσδιορισμού των αποθεμάτων στο υπέδαφος. Ο πολφός (γεωτρητικά ρευστά) είναι το ‘αίμα’ της γεώτρησης: παρέχει πίεση, μεταφορά τριμμάτων/θραυσμάτων από τον πυθμένα του φρέατος, ψύξη και λίπανση κοπτικού και στήλης, καθώς επίσης διατηρεί τα θραύσματα εν αιωρήσει όταν υπάρχει διακοπή της κυκλοφορίας. Ως ρευστό γεώτρησης (drilling fluid) χρησιμοποιείται συνήθως ένα αιώρημα πηλού και άλλων υλικών σε νερό. Τα ρευστά διάτρησης με βάση το νερό αποτελούνται από α) νερό, το οποίο αποτελεί την συνεχή φάση και παρέχει το αρχικό ιξώδες (φρέσκο ή θαλασσινό), β) ενεργά στερεά για την ενίσχυση του ιξώδους και του σημείου διαρροής (μπεντονίτης, που συνιστάται στην περίπτωση του φρέσκου νερού και ατταπουλγίτης, αμίαντος ή σιπιόλιθος, που συνιστώνται στην περίπτωση του θαλασσινού νερού), και γ) αδρανή στερεά για την επίτευξη της απαιτούμενης πυκνότητας (βαρύτης, θειούχος μόλυβδος, σιδηρομεταλλεύματα ή χαλαζιακά υλικά).Τα γεωτρητικά ρευστά αποτελούν το 10-20% του συνολικού κόστους κατά την διάρκεια μιας γεώτρησης. Ποσοστό πολύ υψηλό όταν μιλάμε για επενδύσεις εκκατομυρίων δολλαρίων. Λόγω των ολοένα πιο βαθιών αλλά και περίπλοκων γεωλογικών σχηματισμών υπάρχει τεράστια ανάγκη από την πετρελαική βιομηχανία για καινούργια και περισσότερο αποδοτικά γεωτρητικά ρευστά τα οποία θα μπορούν να ανταπεξέλθουν στα ολοένα και πιο απαιτητικά περβάλλοντα θερμοκρασίας και πίεσης. Τα σημαντικότερα ζητήματα τα οποία καλούνται να ανταποκριθούν τα ρευστά είναι οι ολοένα αυξανόμενες συνθήκες πίεσης και θερμοκρασίας στο υπέδαφος που είναι απόροια της αναζήτησης υδρογονανθράκων σε πλέον δύσβατες περιοχές με μεγαλύτερα βάθη που αυξάνουν τους κινδύνους και το κόστος για μια γεώτρηση. Η απώλεια ρευστού κυκλοφορίας (fluid loss) είναι ένα από τα σημαντικότερα και πλέον δαπανηρά προβλήματα κατά την διαδικασία μιας γεώτρησης. Ως απώλεια ρευστού κυκλοφορίας ορίζεται η συνολική ή μερική απώλεια των ρευστών της γεώτρησης σε εξαιρετικά διαπερατές ζώνες (porous sands), σε σπηλαιώδεις σχηματισμούς (cavernous zones), σε φυσικές ρηγματώσεις (natural fractures) και σε ρηγματώσεις προκαλούμενες κατά τη διάτρηση (induced fractures). Τα τελευταία χρόνια έχουν γίνει αρκετές προσπάθειες για την βελτίωση των γεωτρητικών ρευστών με την χρήση νανοσωματιδίων, τα οποία έχουν τη δυνατότητα να βελτιώσουν τις ιδιότητες των γεωτρητικών ρευστών όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (<1 wt%). Οι μοναδικές τους ιδιότητες σχετίζονται με το μικρό τους μέγεθος και επομένως τον εξαιρετικά μεγάλο λόγο επιφάνειας προς όγκο.Σε αυτή την εργασία, εξετάστηκαν διάφορα εμπορικά νανοσωματίδια (Fe2O3, Fe3O4, SiO2) καθώς επίσης συντέθηκαν, με την μέθοδο της συγκαταβύθισης, νανοσωματιδία μαγνητίτη (custom-made Fe3O4), με και χωρίς επικάλυψη κιτρικού οξέος, τα οποία ερευνήθηκαν ως προς την ικανότητα τους να βελτιώσουν τις ρεολογικές ιδιότητες και την απώλεια ρευστών σε αιωρήματα μπετονίτη. Προκειμένου να χαρακτηρισθούν φυσικοχημικά τα αιωρήματα υπέστησαν ξήρανση με κοκκοποίηση σε θερμοκρασία υγρού Ν2 και κρυοξήρανση. Η μορφολογία, η κρυσταλλική δομή και οι επιφανειακές ομάδες των ξηρών κόνεων εξετάσθηκαν με ηλεκτρονική μικροσκοπία HR-TΕM, περίθλαση ακτίνων Χ (XRD), φυσική ρόφηση Ν2 και φασματοσκοπία FTIR. Οι αλληλεπιδράσεις των σωματιδίων μπετονίτη με τα νανοσωματίδια και οι διάφορες δομές που δημιουργούνται και πως τελικά αυτές επηρεάζουν τις ρεολογικές ιδιότητες των αιωρημάτων εξετάστηκαν με το HR-TEM στους 25°C και 60°C. Με βάση τις εικόνες από το HR-TEM, ένα μοντέλο αλληλεπιδράσεων μεταξύ των διαφορετικών τύπων νανοσωματιδίων και σωματιδίων μπετονίτη δημιουργήθηκε για πρώτη φορά για τέτοια αιωρήματα. Οι ρεολογικές ιδιότητες των παραγόμενων δειγμάτων εξετάστηκαν και σε συνθήκες ατμοσφαιρικής πίεσης (μέχρι 70°C) με την χρήση περιστροφικού ιξωδόμετρου (Grace M3600-Couette type geometry) αλλά και σε συνθήκες υψηλής πίεσης και θερμοκρασίας (69 bar-121°C) (Chandler 7600 HPHT viscometer). Το μοντέλο Herschel-Bulkley χρησιμοποιήθηκε για να περιγράψει τη μεταβολή του ιξώδους με τη μεταβολή των ρεολογικών παραμέτρων δείχνοντας εξαιρετική εφαρμογή για τις διαφορετικές πειραματικές μετρήσεις με συντελεστές συσχέτισης (R2) >0.99 σε όλες τις περιπτώσεις. Οι ρεολογικές μετρήσεις έδειξαν ότι η προσθήκη των νανοσωματιδίων βελτιώνει σημαντικά τις ρεολογικές ιδιότητες των αιωρημάτων μπετονίτη στις διάφορες συνθήκες πίεσης και θερμοκρασίας. Οι απώλειες ρευστών (fluid loss) εξετάστηκαν με φιλτροπρέσες υψηλής πίεσης και θερμοκρασίας (20.7 bar και 121°C) οι οποίες υπολογίζουν τον ρυθμό διήθησης του πολφού μέσω του χρησιμοποιούμενου φίλτρου (κεραμικός δίσκος). Η μεγαλύτερη μείωση στην απώλεια ρευστών επιτεύχθηκε για το δείγμα που περιείχε 0.5 wt% custom-made Fe3O4 με μείωση -40% σε σχέση με το αρχικό δείγμα μπετονίτη που δείχνει την τεράστια ικανότητα των νανοσωματιδίων να βελτιώσουν σημαντικά τις απώλειες ρευστών ακόμα και σε τόσο μικρές συγκεντρώσεις. Τέλος, εξετάστηκε η ικανότητα των παραγόμενων ρευστών να αλλάζουν τις ρεολογικές τους ιδιότητες υπό την επίδραση διάφορων μαγνητικών πεδίων (μέχρι 0.7 Tesla). Τα αποτελέσματα έδειξαν ότι τα καινούργια γεωτρητικά ρευστά έχουν την ικανότητα να αυξάνουν την τάση διολίσθησης (yield stress) έως και 300% σε σχέση με αυτή που μετρήθηκε χωρίς την εφαρμογή μαγνητικού πεδίου. Αυτό είναι κάτι πολύ σημαντικό που επιτρέπει την χρήση έξυπνων ρευστών (smart drilling fluids) τα οποία μπορούν να εξοικονομήσουν και χρόνο αλλά και κόστη κατά την διάρκεια μιας γεώτρησης.Τα νανοσωματίδια δείχνουν πολλές ελπιδοφόρες δυνατότητες σε εφαρμογές γεωτρήσεων αφού έχουν τη δυνατότητα να βελτιώσουν ή και να λύσουν το πρόβλημα της απώλειας ρευστών, όταν προστίθενται ακόμα και σε χαμηλές συγκεντρώσεις (>0.5 wt%), ενώ ταυτόχρονα βελτιστοποιούν τις ρεολογικές ιδιότητες των γεωτρητικών ρευστών. Η χρήση τους για την ανάπτυξη βελτιωμένων γεωτρητικών ρευστών υπόσχεται να αλλάξει την βιομηχανία των γεωτρήσεων και να την βοηθήσει να εξορυχθούν πολύπλοκοι γεωλογικοί σχηματισμοί πιο αποδοτικά αλλά και οικονομικά.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


2012 ◽  
Vol 727-728 ◽  
pp. 1878-1883 ◽  
Author(s):  
Bruno Arantes Moreira ◽  
Flávia Cristina Assis Silva ◽  
Larissa dos Santos Sousa ◽  
Fábio de Oliveira Arouca ◽  
João Jorge Ribeiro Damasceno

During oil well drilling processes in reservoir-rocks, the drilling fluid invades the formation, forming a layer of particles called filter cake. The formation of a thin filter cake and low permeability helps to control the drilling operation, ensuring the stability of the well and reducing the fluid loss of the liquid phase in the interior of the rocks. The empirical determination of the constitutive equation for the stress in solids is essential to evaluate the filtration and filter cake formation in drilling operations, enabling the operation simulation. In this context, this study aims to evaluate the relationship between the porosity and stress in solids of porous media composed of bridging agents used in drilling fluids. The concentration distribution in sediments was determined using a non-destructive technique based on the measure of attenuated gamma rays. The procedure employed in this study avoids the use of compression-permeability cell for the sediment characterization.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3151 ◽  
Author(s):  
Han Cao ◽  
Zheng Zhang ◽  
Ting Bao ◽  
Pinghe Sun ◽  
Tianyi Wang ◽  
...  

The interaction between drilling fluid and shale has a significant impact on wellbore stability during shale oil and gas drilling operations. This paper investigates the effects of the drilling fluid activity on the surface and osmotic hydration characteristics of shale. Experiments were conducted to measure the influence of drilling fluid activity on surface wettability by monitoring the evolution of fluid-shale contact angles. The relationship between drilling fluid activity and shale swelling ratio was determined to investigate the osmotic hydration behavior. The results indicate that, with increasing drilling fluid activity, the fluid–shale contact angles gradually increase—the higher the activity, the faster the adsorption rate; and the stronger the inhibition ability, the weaker the surface hydration action. The surface adsorption rate of the shale with a KCl drilling fluid was found to be the highest. Regarding the osmotic hydration action on the shale, the negative extreme swelling ratio (b) of the shale was found to be: bKCl < bCTAB < bSDBS. Moreover, based on the relationship between the shale swelling ratio and drilling fluid activity, shale hydration can be divided into complete dehydration, weak dehydration, surface hydration, and osmotic hydration, which contributes to the choice of drilling fluids to improve wellbore stability.


2021 ◽  
Author(s):  
Sercan Gul

Abstract Drilling fluid (mud) serves various purposes in drilling operations, the most important being the primary well control barrier to prevent kicks and blowouts. Other duties include, but not limited to, maintaining wellbore stability, removing and transporting formation cuttings to the surface, cooling and lubricating downhole tools, and transmitting hydraulic energy to the drill bit. Mud quality is therefore related to most of the problems in drilling operations either directly or indirectly. The physics-based models used in the industry with drilling fluid information (i.e., cuttings transport, well hydraulics, event detection) are computationally expensive, difficult to integrate for real-time analysis, and not always applicable for all drilling conditions. For this reason, researchers have shown extensive interest in machine learning (ML) approaches to alleviate their fluid-related problems. In this study, a comprehensive review of the abundant literature on the various applications of ML in oil and gas operations, concentrating mainly on drilling fluids, is presented. It was shown that leveraging state-of-the-art supervised and unsupervised ML methods can help predict or eliminate most fluid-related issues in drilling. The review discusses various ML methods, their theory, applications, limitations, and achievements.


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Chengwen Wang ◽  
Yanji Wang ◽  
Ergun Kuru ◽  
Erding Chen ◽  
Fengfeng Xiao ◽  
...  

Abstract Drilling-induced formation damage is the key factor dominating the failure of the development of hydrocarbon reservoirs with low-permeability (i.e., tight formation). In this paper, a new low-damage drilling fluid was formulated, evaluated, and applied to well-drilling operations in a sandstone oil reservoir with low-permeability in the Shengli Oilfield, China. To formulate this low-damage drilling fluid, filter-cake forming agents were used to prevent fluid loss, inhibitors were used to enhance the shale inhibition of the fluid, surfactants were used to minimize water block, and inorganic salts were used to enhance compatibility. A holistic experimental approach combining micro-computed tomography (CT), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) techniques was designed to identify the underlying interactions between new and conventional drilling fluids and rock samples as well as the corresponding damage mechanisms, demonstrating the significant mitigation effects of the newly formulated drilling fluid on formation damage, which mainly results from the hydration of clay minerals and the invasion of solid particles. The newly formulated low-damage drilling fluid then extended its applications to well-drilling operations with excellent performance. Not only can the new low-damage drilling fluid avoid non-fracturing stimulation, but also reduce the drilling operational costs and time, minimize the formation damage, and facilitate extending the reservoir life for a longer time.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Xin Zhao ◽  
Zhengsong Qiu ◽  
Mingliang Wang ◽  
Weian Huang ◽  
Shifeng Zhang

Drilling fluid with proper rheology, strong shale, and hydrate inhibition performance is essential for drilling ultralow temperature (as low as −5 °C) wells in deepwater and permafrost. In this study, the performance of drilling fluids together with additives for ultralow temperature wells has been evaluated by conducting the hydrate inhibition tests, shale inhibition tests, ultralow temperature rheology, and filtration tests. Thereafter, the formulation for a highly inhibitive water-based drilling fluid has been developed. The results show that 20 wt % NaCl can give at least a 16-h safe period for drilling operations at −5 °C and 15 MPa. Polyalcohol can effectively retard pore pressure transmission and filtrate invasion by sealing the wellbore above the cloud point, while polyetheramine can strongly inhibit shale hydration. Therefore, a combination of polyalcohol and polyetheramine can be used as an excellent shale stabilizer. The drilling fluid can prevent hydrate formation under both stirring and static conditions. Further, it can inhibit the swelling, dispersion, and collapse of shale samples, thereby enhancing wellbore stability. It has better rheological properties than the typical water-based drilling fluids used in onshore and offshore drilling at −5 °C to 75 °C. In addition, it can maintain stable rheology after being contaminated by 10 wt % NaCl, 1 wt % CaCl2, and 5 wt % shale cuttings. The drilling fluid developed in this study is therefore expected to perform well in drilling ultralow temperature wells.


2021 ◽  
Author(s):  
Alexandra Clare Morrison ◽  
Conan King ◽  
Kevin Rodrigue

Abstract A combination of divalent base brine and high wellbore temperature presents significant challenges for high density aqueous reservoir drilling fluids. Such systems traditionally use biopolymers as viscosifiers; however, they are subject to degradation at elevated temperatures. Non-aqueous drilling fluids are thermally stable but complete removal of the filtercake is challenging and this can lead to formation damage. This paper describes the qualification and first deepwater drilling application of a unique aqueous reservoir drilling fluid at temperatures above 320°F. A high-temperature divalent brine-based reservoir drilling fluid (HT-RDF) and a solids-free screen running fluid (SF-SRF) were designed, both utilizing the same novel synthetic polymer technology. Calcium bromide brine was selected for use to minimize the total amount of acid-soluble solids in the drilling fluid. A comprehensive qualification was undertaken examining parameters such as rheology performance across a range of temperatures, long-term stability, fluid loss under expected and stress conditions (16 hours at 356°F), production screen test (PST), and various fluid-fluid compatibility tests. Return permeability tests were conducted on the final formulations to validate their suitability for use. The synthetic polymer technology provided excellent rheology, suspension, and fluid loss control in the fluid systems designed in the laboratory. To prepare for field execution multiple yard mixes were performed to verify the laboratory results on a larger scale. Additionally, a flow loop system was utilized to evaluate fluid performance under simulated downhole temperature and pressure conditions before field deployment. The final high temperature drilling fluid as designed provided rheological properties that met the necessary equivalent circulating density (ECD) requirements while drilling the reservoir. The fluid loss remained extremely stable and there were no downhole losses despite the depleted nature of the wellbore. Production screens were run straight to total depth (TD) with no wellbore stability issues after a three-day logging campaign. High temperature aqueous reservoir drilling fluids have historically been limited by the lack of suitable viscosifiers and fluid loss control additives. This paper outlines the design, mixing and logistical considerations and field execution of a novel polymer-based reservoir drilling fluid.


1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


2021 ◽  
Author(s):  
Chen Hongbo ◽  
Okesanya Temi ◽  
Kuru Ergun ◽  
Heath Garett ◽  
Hadley Dylan

Abstract Recent studies highlight the significant role of drilling fluid elasticity in particle suspension and hole cleaning during drilling operations. Traditional methods to quantify fluid elasticity require the use of advanced rheometers not suitable for field application. The main objectives of the study were to develop a generalized model for determining viscoelasticity of a drilling fluid using standard field-testing equipment, investigate the factors influencing drilling fluid viscoelasticity in the field, and provide an understanding of the viscoelasticity concept. Over 80 fluid formulations used in this study included field samples of oil-based drilling fluids as well as laboratory samples formulated with bentonite and other polymers such as partially-hydrolyzed polyacrylamide, synthesized xanthan gum, and polyacrylic acid. Detailed rheological characterizations of these fluids used a funnel viscometer and a rotational viscometer. Elastic properties of the drilling fluids (quantified in terms of the energy required to cause an irreversible deformation in the fluid's structure) were obtained from oscillatory tests conducted using a cone-and-plate type rheometer. Using an empirical approach, a non-iterative model for quantifying elasticity correlated test results from a funnel viscometer and a rotational viscometer. The generalized model was able to predict the elasticity of drilling fluids with a mean absolute error of 5.75%. In addition, the model offers practical versatility by requiring only standard drilling fluid testing equipment to predict viscoelasticity. Experimental results showed that non-aqueous fluid (NAF) viscoelasticity is inversely proportional to the oil-water ratio and the presence of clay greatly debilitates the elasticity of the samples while enhancing their viscosity. The work efforts present a model for estimating drilling fluid elasticity using standard drilling fluid field-testing equipment. Furthermore, a revised approach helps to describe the viscoelastic property of a fluid that involves quantifying the amount of energy required to irreversibly deform a unit volume of viscoelastic fluid. The methodology, combined with the explanation of the viscoelasticity concept, provides a practical tool for optimizing drilling operations based on the viscoelasticity of drilling fluids.


Sign in / Sign up

Export Citation Format

Share Document