Stimulation of Wells Damaged by Barite Present in Filter Cake or Scale

SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Igor Ivanishin ◽  
Hisham A. Nasr-El-Din ◽  
Dmitriy Solnyshkin ◽  
Artem Klyubin

Summary High-temperature (HT) deep carbonate reservoirs are typically drilled using barite (BaSO4) as a weighting material. Primary production in these tight reservoirs comes from the network of natural fractures, which are damaged by the invasion of mud filtrate during drilling operations. For this study, weighting material and drilling fluid were sampled at the same drillsite. X-ray diffraction (XRD) and X-ray fluorescence analyses confirmed the complex composition of the weighting material: 43.2 ± 3.8 wt% of BaSO4 and 47.8 ± 3.3 wt% of calcite (CaCO3); quartz and illite comprised the rest. The drilling fluid was used to form the filter cake in a high-pressure/high-temperature (HP/HT) filter-press apparatus at a temperature of 300°F and differential pressure of 500 psig. Compared with the weighting material, the filter cake contained less CaCO3, but more nondissolvable minerals, including quartz, illite, and kaolinite. This difference in mineral composition makes the filter cake more difficult to remove. Dissolution of laboratory-grade BaSO4, the field sample of the weighting material, and drilling-fluid filter cake were studied at 300°F and 1,000 to 1,050 psig using an autoclave equipped with a magnetic stirrer drive. Two independent techniques were used to investigate the dissolution process: analysis of the withdrawn-fluid samples using inductively coupled plasma-optical emission spectroscopy, and XRD analysis of the solid material left after the tests. The dissolution efficiency of commercial K5-diethylenetriaminepentaacetic acid (DTPA), two K4-ethylenediaminetetraacetic acid (EDTA), Na4-EDTA solutions, and two “barite dissolvers” of unknown composition was compared. K5-DTPA and K4-EDTA have similar efficiency in dissolving BaSO4 as a laboratory-grade chemical and a component of the calcite-containing weighting material. No pronounced dissolution-selectivity effect (i.e., preferential dissolution of CaCO3) was noted during the 6-hour dissolution tests with both solutions. Reported for the first time is the precipitation of barium carbonate (BaCO3) when a mixture of BaSO4 and CaCO3 is dissolved in DTPA or EDTA solutions. BaCO3 composes up to 30 wt% of the solid phase at the end of the 6-hour reaction, and can be dissolved during the field operations by 5 wt% hydrochloric acid. Being cheaper, K4-EDTA is the preferable stimulation fluid. Dilution of this chelate increases its dissolution efficiency. Compared with commonly recommended solutions of 0.5 to 0.6 M, a more dilute solution is suggested here for field application. The polymer breaker and K4-EDTA solution are incompatible; therefore, the damage should be removed in two stages if the polymer breaker is used.

2020 ◽  
Vol 12 (6) ◽  
pp. 2455
Author(s):  
Hany Gamal ◽  
Salaheldin Elkatatny ◽  
Dhafer Al Shehri ◽  
Mohamed Bahgat

The oil and gas production operations suffer from scale depositions. The scale precipitations have a damaging impact on the reservoir pores, perforations, downhole and completion equipment, pipeline network, wellhead chokes, and surface facilities. Hydrocarbon production possibly decreased because of the scale accumulation in the well tubular, leading to a well plugging, this requires wells to be shut-in in severe cases to perform a clean-out job. Therefore, scale deposition is badly affecting petroleum economics. This research aims to design a scale dissolver with low cost, non-damaging for the well equipment and has a high performance at the field operating conditions. This paper presents a novel non-corrosive dissolver for sulfate and sulfide composite scale in alkaline pH and works at low-temperature conditions. The scale samples were collected from a production platform from different locations. A complete description of the scale samples was performed as X-ray diffraction (XRD) and X-ray fluorescence (XRF). The new scale dissolver was prepared in different concentrations to examine its dissolution efficiency for the scale with time at low temperatures. The experimental design studied the solid to fluid ratio, temperature, solubility time, and dissolution efficiency in order to achieve the optimum and most economic performance of solubility in terms of high dissolution efficiency with the smallest possible amount of scale dissolver. A solubility comparison was performed with other commercial-scale-dissolvers and the corrosion rate was tested. The experimental work results demonstrated the superior performance of the new scale dissolver. The new scale dissolver showed a solubility efficiency of 91.8% at a low temperature of 45 °C and 79% at 35 °C. The new scale dissolver showed a higher solubility ratio for the scale sample than the ethylenediaminetetraacetic acid (EDTA) (20 wt. %), diethylenetriamine pentaacetic acid (DTPA) (20 wt. %), and HCl (10 wt. %). The corrosion rate for the new non-corrosive dissolver was 0.01357 kg/m2 (0.00278 lb./ft²) which was considered a very low rate and non-damaging for the equipment. The low corrosive effect of the new dissolver will save the extra cost of adding the corrosion inhibitors and save the equipment from the damaging effect of the corrosive acids.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mohamed Mahmoud

The well clean-up process involves the removal of impermeable filter cake from the formation face. This process is essential to allow the formation fluids to flow from the reservoir to the wellbore. Different types of drilling fluids such as oil- and water-based drilling fluids are used to drill oil and gas wells. These drilling fluids are weighted with different weighting materials such as bentonite, calcium carbonate, and barite. The filter cake that forms on the formation face consists mainly of the drilling fluid weighting materials (around 90%), and the rest is other additives such as polymers or oil in the case of oil-base drilling fluids. The process of filter cake removal is very complicated because it involves more than one stage due to the compatibility issues of the fluids used to remove the filter cake. Different formulations were used to remove different types of filter cake, but the problem with these methods is the removal efficiency or the compatibility. In this paper, a new method was developed to remove different types of filter cakes and to clean-up oil and gas wells after drilling operations. Thermochemical fluids that consist of two inert salts when mixed together will generate very high pressure and high temperature in addition to hot water and hot nitrogen. These fluids are sodium nitrate and ammonium chloride. The filter cake was formed using barite and calcite water- and oil-based drilling fluids at high pressure and high temperature. The removal process started by injecting 500 ml of the two salts and left for different time periods from 6 to 24 h. The results of this study showed that the newly developed method of thermochemical removed the filter cake after 6 h with a removal efficiency of 89 wt% for the barite filter cake in the water-based drilling fluid. The mechanisms of removal using the combined solution of thermochemical fluid and ethylenediamine tetra-acetic acid (EDTA) chelating agent were explained by the generation of a strong pressure pulse that disturbed the filter cake and the generation of the high temperature that enhanced the barite dissolution and polymer degradation. This solution for filter cake removal works for reservoir temperatures greater than 100 °C.


1985 ◽  
Vol 63 (2) ◽  
pp. 324-328 ◽  
Author(s):  
M. Sunitha Kumari ◽  
Etalo A. Secco

Order–disorder transitions occurring in the Ag2SO4–K2SO4 system were investigated by reaction kinetics, thermal analyses, X-ray diffraction, and electrical conductivity techniques. Solid–liquid and solid–solid phase diagrams are reported.The conductivity data in the high temperature phase of the solid resemble superionic conductivity behavior. The higher conductivity of Ag2SO4 with K+ presence relative to pure Ag2SO4 and Ag2−xNaxSO4 compositions support a lattice expansion facilitating higher mobility of ions.The reaction kinetics, X-ray diffraction, and electroconductivity results suggest a relatively open periodic [Formula: see text] sublattice in the high-temperature phase of the sulfate-based systems studied in this series.


1997 ◽  
Vol 52 (8-9) ◽  
pp. 679-680 ◽  
Author(s):  
Hiroyuki Ishida ◽  
Hiroshi Ono ◽  
Ryuichi Ikeda

Abstract The crystal structure of the highest-and second highest-temperature solid phases of choline tetrafluoroborate and iodide was determined by X-ray powder diffraction. The structure in the highest-temperature phase of both salts is NaCl-type cubic (a = 10.16(2) Å, Z = 4 for tetrafluorobo-rate; a = 10.08(2) Å, Z = 4 for iodide). The second highest-temperature phase of tetrafluoroborate and iodide is CsCl-type cubic (a = 6.198(6) Å and Z = 1) and tetragonal (a = 8.706(2) Å, c = 6.144(6) Å, and Z = 2), respectively. DSC was carried out for the iodide, where the presence of three solid-solid phase transitions was confirmed. Enthalpy and entropy changes of these transitions were evaluated.


1983 ◽  
Vol 16 (6) ◽  
pp. 646-648 ◽  
Author(s):  
C. Jourdan ◽  
J. Gastaldi

With a high-temperature camera, designed for in situ synchrotron radiation X-ray topography, the crystallography of the α → β transition in titanium has been studied.


2011 ◽  
Vol 689 ◽  
pp. 355-360
Author(s):  
Qiu Guo Xiao ◽  
Gang Cheng Ding ◽  
Tang Zhong Long ◽  
Shao Hua Shen

This paper has put forward a high-temperature quantitative X-ray powder diffraction analysis method for the determination of an isothermal section of a ternary system in comparison with a conventional method. In a three-phase region of the isothermal section at 1150 °C of Cu2O(CuO)-Al2O3-SiO2 pseudo-ternary system, the compositions of the solid phase points of three system points are determined according to the quantitative analysis of the crystalline phases in the samples carried out by Rietveld method. Then the liquid phase point of the three-phase region is determined according to the crosspoints of the tie lines of every pair of system point and solid phase point. The precisions of the analytical results have reached to be 0.1 ~ 5.0 %. By comparison, a good result is obtained for the determination of the liquid phase point of the three-phase region in the isothermal section at 1150 °C when the analytical results of high-temperature RQA analysis are used in determination of the isothermal section of the pseudo-ternary system.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
C. P. Ezeakacha ◽  
S. Salehi ◽  
A. Hayatdavoudi

In real time drilling, the complexity of drilling fluid filtration is majorly attributed to changing mud rheology, formation permeability, mud particle size distribution (PSD), filter cake plastering effects, and geochemical reaction of particles at geothermal conditions. This paper focuses on quantifying the major effects as well as revealing their contribution toward effective wellbore stabilization in sandstone formations. We conducted an extensive experimental and analytical study on this subject at different levels. First, we used field application and the results as guides for our experiments. We have considered both oil-based mud and water-based mud. Next, we optimized the mud particle size distribution (PSD) by carefully varying the type, size, and concentration of wellbore strengthening material (WSM). Laboratory high pressure high temperature fluid loss tests were carried out on Michigan and Bandera Brown sandstones. The results from these tests identify the formation heterogeneity and permeability in successful wellbore stabilization. Filter cake permeability calculations, using the analytical model for linear systems, were consistent with filtration rates, and the expected trend of permeability declines with time. Finally, we investigated the evolution of internal filter cake and plastering mechanism, using scanning electron microscopic (SEM) analysis. The test results revealed a significant difference in the formation permeability impairment for the optimal mud PSD and WSM blend.


2016 ◽  
Vol 71 (12) ◽  
pp. 1225-1232
Author(s):  
Sebastian Bräuchle ◽  
Clivia Hejny ◽  
Hubert Huppertz

AbstractBaSr2Ge3O9 was prepared by high-temperature solid-state synthesis at 1100°C in a platinum crucible from barium carbonate, strontium carbonate, and germanium(IV) oxide. The compound crystallizes in the triclinic space group P1̅ (no. 2) isotypically to walstromite BaCa2Si3O9. The structure was refined from single-crystal X-ray diffraction data: a=7.104(5), b=10.060(7), c=7.099(5) Å, α=83.0(2), β=77.0(2), γ=70.2(2)°, V=464.3(6) Å3, R1=0.0230, and wR2=0.0602 for all data. BaSr2Ge3O9 is characterized by three-membered rings of germanate tetrahedra. There are three crystallographically different Ge sites (Ge1, Ge2, and Ge3) in each [Ge3O9]6− ring. The rings occur in layers with the apices of alternating rings pointing in opposite directions. The Sr2+ and Ba2+ ions are located in between. The Sr1 cation is eight-fold coordinated, while Sr2 is octahedrally surrounded by oxide anions, and the Ba cation again eight-fold coordinated.


2001 ◽  
Vol 16 (4) ◽  
pp. 205-211 ◽  
Author(s):  
S. N. Tripathi ◽  
R. Mishra ◽  
M. D. Mathews ◽  
P. N. Namboodiri

X-ray powder diffraction investigation of the new high temperature polymorphs beta- and gamma-CaTeO3 and gamma- and delta-CaTe2O5 and picnometric measurements of the room temperature phases of the two compounds have been carried out. The study led to the elucidation of their unit cell structures and assignment of entirely new lattice types and parameters to the room temperature phases of CaTeO3 and CaTe2O5 in contrast and supersession to the existing structural information. The results are as follows: CaTeO3 has only one stable phase at room temperature and temperatures up to 882 °C, i.e., α- and has a triclinic unit cell with a=4.132±0.003 Å, b=6.120±0.006 Å, c=12.836±0.013 Å, α=121.80°, β=99.72°, γ=97.26°. The first high temperature phase stable between 882 and 894 °C, i.e., β-CaTeO3, has a monoclinic lattice: a=20.577±0.007 Å, b=21.857±0.009 Å, c=4.111±0.002 Å, β=96.15°, while the next phase stable above 894 °C, i.e., γ-CaTeO3, has a hexagonal unit cell with parameters: a=14.015±0.0001 Å, c=9.783±0.001 Å, c/a=0.698. CaTe2O5 has one stable phase at temperatures up to 802 °C, i.e., α-CaTe2O5 with a monoclinic lattice and parameters: a=9.069±0.002 Å, b=25.175±0.007 Å, c=3.366±0.001 Å, β=98.29 °. The first high temperature phase stable in the range 802–845°, i.e., β-CaTe2O5, is monoclinic with unit cell parameters: a=4.146±0.001 Å, b=5.334±0.002 Å, c=6.105±0.002 Å, β=98.362 °; the next higher temperature phase stable over 845–857 °C, i.e., γ-CaTe2O5, has an orthorhombic unit cell with: a=8.638±0.001 Å, b=9.291±0.001 Å, c=7.862±0.001 Å and the highest temperature solid phase stable above 857 °C, i.e., δ-CaTe2O5 has a tetragonal unit cell with a=5.764±0.000 Å, c=32.074±0.020 Å, c/a=5.5637.


Sign in / Sign up

Export Citation Format

Share Document