Economic Evaluation of CO2 Capture, Transportation, and Storage Potentials in Oklahoma

2021 ◽  
Author(s):  
J. DaneshFar ◽  
D. Nnamdi ◽  
R. G. Moghanloo ◽  
K. Ochie

Abstract Oklahoma is known for having ample sources of CO2, pipelines and sinks where for many decades, oil and gas operators were injecting CO2 into geological formations for EOR purposes. We utilized SimCCS, an economic-engineering software tool (DOE-NETL), to integrate infrastructure related to CO2 sources, pipeline, and geological formations. The approved tax incentive program by IRS (45Q) has motivated many oil and gas operators to participate in reducing CO2 concentration and minimizing global warming effect by collecting CO2 from various sources, select the best pipeline route and the safest location to inject into geological formation for EOR purpose or deep saline aquifer for sequestration. This paper presents an economic evaluation of CO2 capture, utilization, storage (CCUS) into geological formation in the state of Oklahoma. Under this comprehensive approach, the process of capturing, transporting, and storing CO2 into geological or saline formations has been economically evaluated for different sites and routes utilizing an ad hoc simulation software (SimCCS) for integrated modeling of CCUS. The outcome of this paper determines the most optimal scenario using optimization algorithms embedded in SimCCS. This case study will mitigate the CO2 sequestration approval process when operator apply for tax credit under 45Q program. Our work will assist oil and gas operators by comparing different scenarios based on utilizing existing infrastructure, making decision in building new transportation system or new injection well to benefit the approved tax incentive program at its maximum capacity. Moreover, the outcome of this work will shed lights into future legislation demands (locally and nation-wide) to maintain CCUS momentum after its initial implementation phase is concluded.

The present-day stage of the world hydrocarbon market development is characterized by the growing share of oil and gas production from the fields related to hard-to-recover reserves in terms of different criteria, which is a consequence of technological breakthrough in the USA. The strategic task of Russian oil and gas sector is to intensify the development of such fields with governmental support in the form of tax incentives. The goal of this research is to consider dynamics of oil production from the fields related to Bazhenov, Abalak, Domanic, and Khadumsk geological formations with enormous hydrocarbon potential thanks to tax incentives. The research method used is statistical analysis. The research results have shown the effectiveness of tax incentives, but due to absence of native development technologies, the effectiveness of incentives is evened, which requires different approaches to the tax incentive system.


Author(s):  
Patrick Nwafor ◽  
Kelani Bello

A Well placement is a well-known technique in the oil and gas industry for production optimization and are generally classified into local and global methods. The use of simulation software often deployed under the direct optimization technique called global method. The production optimization of L-X field which is at primary recovery stage having five producing wells was the focus of this work. The attempt was to optimize L-X field using a well placement technique.The local methods are generally very efficient and require only a few forward simulations but can get stuck in a local optimal solution. The global methods avoid this problem but require many forward simulations. With the availability of simulator software, such problem can be reduced thus using the direct optimization method. After optimization an increase in recovery factor of over 20% was achieved. The results provided an improvement when compared with other existing methods from the literatures.


2009 ◽  
Vol 1 (1) ◽  
pp. 3835-3842 ◽  
Author(s):  
Cristina Botero ◽  
Matthias Finkenrath ◽  
Michael Bartlett ◽  
Robert Chu ◽  
Gerald Choi ◽  
...  

2011 ◽  
Vol 4 ◽  
pp. 1851-1860 ◽  
Author(s):  
Rosa Domenichini ◽  
Franco Gasparini ◽  
Paolo Cotone ◽  
Stanley Santos

Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 47 ◽  
Author(s):  
Alexey Cherepovitsyn ◽  
Dmitry Metkin ◽  
Alexander Gladilin

Currently, under the conditions of increasing depletion of hydrocarbon reserves in Russia, it is necessary to consider the resource potential of poorly-researched oil and gas objects as a factor for ensuring the sustainable development of the oil and gas complex, in the context of the concept formation of rational subsoil utilization and a circular economy. The methodology of this study is based on a clear sequence of geological and economic studies of poorly-researched oil and gas objects, including four stages, such as analysis of the raw material base, assessment of the raw material potential, determination of technological development parameters, and economic evaluation. The methods of the probabilistic estimation of oil resources of the forecasted objects with regard to geological risk are outlined. Software packages “EVA—Risk Analysis” and “EVA—Economic Evaluation of Oil and Gas Field Development Projects” were used for estimation. The result of the study is the determination of the geological and economic efficiency of the development of nine hydrocarbon objects with the determination of the order of their further geological exploration, and introduction into industrial development on the example of the poorly-researched region of the Timan-Pechora oil and gas province located in the Arctic zone.


Author(s):  
Emmanuel E. Luther ◽  
Seyed M. Shariatipour ◽  
Michael C. Dallaston ◽  
Ran Holtzman

AbstractCO2 geological sequestration has been proposed as a climate change mitigation strategy that can contribute towards meeting the Paris Agreement. A key process on which successful injection of CO2 into deep saline aquifer relies on is the dissolution of CO2 in brine. CO2 dissolution improves storage security and reduces risk of leakage by (i) removing the CO2 from a highly mobile fluid phase and (ii) triggering gravity-induced convective instability which accelerates the downward migration of dissolved CO2. Our understanding of CO2 density-driven convection in geologic media is limited. Studies on transient convective instability are mostly in homogeneous systems or in systems with heterogeneity in the form of random permeability distribution or dispersed impermeable barriers. However, layering which exist naturally in sedimentary geological formations has not received much research attention on transient convection. Therefore, we investigate the role of layering on the onset time of convective instability and on the flow pattern beyond the onset time during CO2 storage. We find that while layering has no significant effect on the onset time, it has an impact on the CO2 flux. Our findings suggest that detailed reservoir characterisation is required to forecast the ability of a formation to sequester CO2.


2020 ◽  
Vol 12 (2) ◽  
pp. 67-77
Author(s):  
Quan Zhuang ◽  
Philip Geddis ◽  
Bruce Clements

A detailed economic evaluation was carried out to determine the impact of biomass and coal co-firing on power plant carbon capture by methods of plants equipment designing factors and performance, and the sum up of the associated breakdowns of CAPEX and OPEX. Based on the assumptions of the CO2 neutrality of biomass and likely governmental incentives to reduce CO2 emissions, the study results show that biomass and coal co-firing would result in both lower cost of carbon avoided (carbon capture) and lower incremental cost of electricity generation when MEA solvent carbon capture is applied. Two scenarios for co-firing with carbon capture, 30% biomass blending and 90% or 60% CO2 capture from stack, indicate different preference depending on lower or higher incentives.


Sign in / Sign up

Export Citation Format

Share Document