Practical Applications of Diagnostic Data Science in Drilling and Completions

2021 ◽  
Author(s):  
Chad Senters ◽  
Swathika Jayakumar ◽  
Mark Warren ◽  
Mike Wells ◽  
Rachel Harper ◽  
...  

Abstract The application of data science remains relatively new to the oil and gas industry but continues to gain traction on many projects due to its potential to assist in solving complex problems. The amount and quality of the right type of data can be as much of a limitation as the complex algorithms and programing required. The scope of any data science project should look for easy wins early on and not attempt an all-encompassing solution with the click of a button (although that would be amazing). This paper focuses on several specific applications of data applied to a sizable database to extract useful solutions and provide an approach for data science on future projects. The first step when applying data analytics is to build a suitable database. This might appear rudimentary at first glance, but historical data is seldom catalogued optimally for future projects. This is especially true if specific portions of the recorded data were not known to be of use in solving future problems. The approach to improving the quality of the database for this paper is to establish requirements for the data science objectives and apply this to past, present and future data. Once the data are in the right "format", the extensive process of quality control can begin. Although this part of the paper is not the most exciting, it might be the most important, as most programing yields the same "garbage in = garbage out" equation. After the data have found a home and are quality checked, the data science can be applied. Case studies are presented based on the application of diagnostic data from an extensive project/well database. To leverage historical data in new projects, metrics are created as a benchmarking tool. The case studies in this paper include metrics such as the Known Lateral Contribution (KLC), Heel-to-Toe Ratio (HTR), Communication Intensity (CI), Proppant Efficiency (PE) and stage level performance. These results are compared to additional stimulation and geological information. This paper includes case studies that apply data science to diagnostics on a large scale to deliver actionable results. The results discussed will allow for the utilization of this approach in future projects and provide a roadmap to better understand diagnostic results as they relate to drilling and completion activity.

2017 ◽  
pp. 139-145
Author(s):  
R. I. Hamidullin ◽  
L. B. Senkevich

A study of the quality of the development of estimate documentation on the cost of construction at all stages of the implementation of large projects in the oil and gas industry is conducted. The main problems that arise in construction organizations are indicated. The analysis of the choice of the perfect methodology of mathematical modeling of the investigated business process for improving the activity of budget calculations, conducting quality assessment of estimates and criteria for automation of design estimates is performed.


2020 ◽  
Author(s):  
Israel Guevara ◽  
David Ardila ◽  
Kevin Daza ◽  
Oscar Ovalle ◽  
Paola Pastor ◽  
...  

2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2021 ◽  
Author(s):  
Abdul Muqtadir Khan

Abstract With the advancement in machine learning (ML) applications, some recent research has been conducted to optimize fracturing treatments. There are a variety of models available using various objective functions for optimization and different mathematical techniques. There is a need to extend the ML techniques to optimize the choice of algorithm. For fracturing treatment design, the literature for comparative algorithm performance is sparse. The research predominantly shows that compared to the most commonly used regressors and classifiers, some sort of boosting technique consistently outperforms on model testing and prediction accuracy. A database was constructed for a heterogeneous reservoir. Four widely used boosting algorithms were used on the database to predict the design only from the output of a short injection/falloff test. Feature importance analysis was done on eight output parameters from the falloff analysis, and six were finalized for the model construction. The outputs selected for prediction were fracturing fluid efficiency, proppant mass, maximum proppant concentration, and injection rate. Extreme gradient boost (XGBoost), categorical boost (CatBoost), adaptive boost (AdaBoost), and light gradient boosting machine (LGBM) were the algorithms finalized for the comparative study. The sensitivity was done for a different number of classes (four, five, and six) to establish a balance between accuracy and prediction granularity. The results showed that the best algorithm choice was between XGBoost and CatBoost for the predicted parameters under certain model construction conditions. The accuracy for all outputs for the holdout sets varied between 80 and 92%, showing robust significance for a wider utilization of these models. Data science has contributed to various oil and gas industry domains and has tremendous applications in the stimulation domain. The research and review conducted in this paper add a valuable resource for the user to build digital databases and use the appropriate algorithm without much trial and error. Implementing this model reduced the complexity of the proppant fracturing treatment redesign process, enhanced operational efficiency, and reduced fracture damage by eliminating minifrac steps with crosslinked gel.


Author(s):  
Robert Palmer ◽  
Damien Short ◽  
Walter Auch

Access to water, in sufficient quantities and of sufficient quality is vital for human health. The United Nations Committee on Economic, Social and Cultural Rights (in General Comment 15, drafted 2002) argued that access to water was a condition for the enjoyment of the right to an adequate standard of living, inextricably related to the right to the highest attainable standard of health, and thus a human right. On 28 July 2010 the United Nations General Assembly declared safe and clean drinking water and sanitation a human right essential to the full enjoyment of life and all other human rights. This paper charts the international legal development of the right to water and its relevance to discussions surrounding the growth of unconventional energy and its heavy reliance on water. We consider key data from the country with arguably the most mature and extensive industry, the USA, and highlight the implications for water usage and water rights. We conclude that, given the weight of testimony of local people from our research, along with data from scientific literature, non-governmental organization (NGO) and other policy reports, that the right to water for residents living near fracking sites is likely to be severely curtailed. Even so, from the data presented here, we argue that the major issue regarding water use is the shifting of the resource from society to industry and the demonstrable lack of supply-side price signal that would demand that the industry reduce or stabilize its water demand per unit of energy produced. Thus, in the US context alone, there is considerable evidence that the human right to water will be seriously undermined by the growth of the unconventional oil and gas industry, and given its spread around the globe this could soon become a global human rights issue.


Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


Author(s):  
Ken P. Games ◽  
David I. Gordon

ABSTRACTSand waves are well known indicators of a mobile seabed. What do we expect of these features in terms of migration rates and seabed scour? We discuss these effects on seabed structures, both for the Oil and Gas and the Windfarm Industries, and consider how these impact on turbines and buried cables. Two case studies are presented. The first concerns a windfarm with a five-year gap between the planning survey and a subsequent cable route and environmental assessment survey. This revealed large-scale movements of sand waves, with the displacement of an isolated feature of 155 m in five years. Secondly, another windfarm development involved a re-survey, again over a five-year period, but after the turbines had been installed. This showed movements of sand waves of ∼50 m in five years. Observations of the scour effects on the turbines are discussed. Both sites revealed the presence of barchans. Whilst these have been extensively studied on land, there are few examples of how they behave in the marine environment. The two case studies presented show that mass transport is potentially much greater than expected and that this has implications for choosing turbine locations, the effect of scour, and the impact these sediment movements are likely to have on power cables.


2021 ◽  
Vol 05 (01) ◽  
pp. 04-10
Author(s):  
Sabir Babaev ◽  
Ibrahim Habibov ◽  
Zohra Abiyeva

Prospects for the further development of the oil and gas industry are mainly associated with the development and commissioning of high-rate fields. In this regard, the production of more economical and durable equipment by machine-building enterprises, an increase in the level of its reliability and competitiveness, as well as further improvement of technological production processes, is of paramount importance. The evolution of technology in a broad sense is a representation of changes in designs, manufacturing technology, their direction and patterns. In this case, a certain state of any class of TC is considered as a result of long-term changes in its previous state; transition from existing and applied in practice vehicles to new models that differ from previous designs. These transitions, as a rule, are associated with the improvement of any performance criteria or quality indicators of the vehicle and are progressive in nature. The work is devoted to the study of the evolution of the quality of high-pressure valves during the period of their intensive development. Keywords: technical system, evolution of technology, high-pressure valves, shut-off devices, gate.


2021 ◽  
Author(s):  
Jamie Dorey ◽  
Georgy Rassadkin ◽  
Douglas Ridgway

Abstract The field experience in the continental US suggests that approximately 33% of plug and abandonment operations are non-routine, and 5% require re-entry (Greer C.R., 2018). In some scenarios, the most cost-efficient option for the intervention is drilling an intercept well to re-enter the target well or multiple wells externally using advanced survey management and magnetic ranging techniques. This paper presents the methods applied of relief well methodologies from the planning to execution of a complex multiple-well abandonment project. Improvements in Active Magnetic Ranging sensor design and applications have improved the availability of highly precise tools for the purpose of locating and intercepting wellbores where access is not possible. These instruments were commonplace on relief well interventions, however, have found a new application in solving one of the major issues facing the oil and gas industry. Subsurface abandonments are a complex task that requires a robust methodology. In this paper, we describe the techniques that have been built upon the best practices from industry experience (ISCWSA WISC eBook). This paper also illustrates how the combination of advanced survey management, gyro surveying, and magnetic ranging can be used following the best industry practices for fast and cost-efficient non-routine plug and abandonment. Case studies of several abandonment projects are presented showing the various technical challenges which are common on idle and legacy wells. The projects include wells that are currently under the ownership of an operator and orphaned wells that have been insufficiently abandoned and left idle over many decades. The case studies outline how the application of relief well methodologies to the execution of complex sub surface interventions led to the successful outcomes of meeting environmental and government regulations for wellbore abandonment. This includes performing multiple zonal isolations between reservoirs, water zones and preventing oil and gas seepage to the surface. The projects and their outcomes prove economically viable strategies for tackling the growing issue of idle and orphaned wells globally in a fiscally responsible manner. Combining industry best practice methods for relief well drilling, along with the technological advancements in magnetic ranging systems is a solution for one of the largest dilemmas facing the oil and gas industry in relation to idle and orphaned wellbores. These applications allow previously considered impossible abandonments to be completed with a high probability of long-term success in permanent abandonment.


Sign in / Sign up

Export Citation Format

Share Document