Well Cleanup Utilizing Smart Well Completion and Zero Flaring Technology

2021 ◽  
Author(s):  
Mohammed Alkhalifah ◽  
Rabih Younes

Abstract In an oil field, openhole multilateral maximum reservoir contact (MRC) wells are drilled. These wells are typically equipped with smart well completion technologies consisting of inflow control valves and permanent downhole monitoring systems. Conventional flowback techniques consisted of flowing back the well to atmosphere while burning the hydrocarbon and drilling fluids brought to surface. In an age of economic, environmental and safety consciousness, all practices in the petroleum industry are being examined closely. As such, the conventional method of flowing back wells is frowned upon from all aspects. This gives rise to the challenge of flowing back wells in an economic manner without compromising safety and the environment; all the while ensuring excellent well deliverability. By utilizing subsurface smart well completion inflow control valves, individual laterals are flowed to a separator system whereby solid drill cuttings are captured and discharged using a solids management system. Hydrocarbons are separated using a separation vessel and measured before being sent to the production line toward the field separation facility. Permanent downhole monitoring systems are used to monitor pressure drawdown and subsequently control the rate of flow to surface to ensure reservoir integrity. Following the completion of the solids and drilling fluid flowback from the wellbore, comprehensive multi-rate measurements at different choke settings are obtained to quantify the well performance. This paper looks at the economic and environmental improvements of the adopted zero flaring cleanup technology and smart well completions flowback techniques in comparison to conventional flowback methods. This ensures that oil is being recovered during well flowback and lateral contribution to overall flow in multilateral wells. In addition, it highlights the lessons learned and key best practices implemented during the cleanup operation to complete the job in a safe and efficient manner. This technique tends to set a roadmap for a better well flowback that fulfills economic constrains and protects the environment.

2021 ◽  
Author(s):  
Thenuka M. Ariyaratna ◽  
Nihal U. Obeyesekere ◽  
Tharindu S. Jayaneththi ◽  
Jonathan J. Wylde

Abstract A need for more economic drilling fluids has been addressed by repurposing heavy brines typically used as completion fluids. Heavy brine corrosion inhibitors have been designed for stagnant systems. Drilling fluids are subjected to both heavy agitation and aeration through recirculation systems and atmospheric exposure during the various stages of the drilling process. This paper documents the development of heavy brine corrosion inhibitors to meet these additional drilling fluid requirements. Multiple system scenarios were presented requiring a methodical evaluation of corrosion inhibitor specifications while still maintaining performance. Due to the high density of heavy brine, traditional methods of controlling foaming were not feasible or effective. Additional product characteristics had to be modified to allow for the open mud pits where employees would be working, higher temperatures, contamination from drill cuttings, and product efficacy reduction due to absorption from solids. The product should not have any odor, should have a high flash point, and mitigate corrosion in the presence of drill cuttings, oxygen, and sour gases. Significant laboratory development and testing were done in order to develop corrosion inhibitors for use in heavy brines based on system conditions associated with completion fluids. The application of heavy brine as a drilling fluid posed new challenges involving foam control, solubility, product stability, odor control, and efficacy when mixed with drill cuttings. The key to heavy brine corrosion inhibitor efficacy is solubility in a supersaturated system. The solvent packages developed to be utilized in such environments were highly sensitive and optimized for stagnant and sealed systems. Laboratory testing was conducted utilizing rotating cylinder electrode tests with drill cuttings added to the test fluid. Product components that were found to have strong odors or low flash points were removed or replaced. Extensive foaming evaluations of multiple components helped identify problematic chemistries. Standard defoamers failed to control foaming but the combination of a unique solvent system helped to minimize foaming. The evaluations were able to minimize foaming and yield a low odor product that was suitable for open mud pits and high temperatures without compromising product efficacy. The methodology developed to transition heavy brine corrosion inhibitors from well completion applications to drilling fluid applications proved to be more complex than initially considered. This paper documents the philosophy of this transitioning and the hurdles that were overcome to ensure the final product met the unique system guidelines. The novel use of heavy brines as drilling fluids has created a need for novel chemistries to inhibit corrosion in a new application.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Felipe Chagas ◽  
Paulo R. Ribeiro ◽  
Otto L. A. Santos

Abstract The demand for energy has increased recently worldwide, requiring new oilfield discoveries to supply this need. Following this demand increase, challenges grow in all areas of the petroleum industry especially those related to drilling operations. Due to hard operational conditions found when drilling complex scenarios such as high-pressure/high-temperature (HPHT) zones, deep and ultradeep water, and other challenges, the use nonaqueous drilling fluids became a must. The reason for that is because this kind of drilling fluid is capable to tolerate these extreme drilling conditions found in those scenarios. However, it can experience changes in its properties as a result of pressure and temperature variations, requiring special attention during some drilling operations, such as the well control. The well control is a critical issue since it involves safety, social, economic, and environmental aspects. Well control simulators are a valuable tool to support well control operations and preserve the well integrity, verifying operational parameters and to assist drilling engineers in the decision-making process during well control operations and kick situations. They are also important computational tools for rig personnel training. This study presents well control research and development contributions, as well as the results of a computational well control simulator that applies the Driller's method and allows the understanding the thermodynamic behavior of synthetic drilling fluids, such as n-paraffin and ester base fluids. The simulator employed mathematical correlations for the drilling fluids pressure–volume–temperature (PVT) properties obtained from the experimental data. The simulator results were compared to a test well data set as well to the published results from other kick simulators.


2019 ◽  
Vol 10 (3) ◽  
pp. 1215-1225
Author(s):  
Asawer A. Alwassiti ◽  
Mayssaa Ali AL-Bidry ◽  
Khalid Mohammed

AbstractShale formation is represented as one of the challenge formations during drilling wells because it is a strong potential for wellbore instability. Zubair formation in Iraqi oil fields (East Baghdad) is located at a depth from 3044.3 to 3444 m. It is considered as one of the most problematic formations through drilling wells in East Baghdad. Most problems of Zubair shale are swelling, sloughing, caving, cementing problem and casing landing problem caused by the interaction of drilling fluid with the formation. An attempt to solve the cause of these problems has been adapted in this paper by enhancing the shale stability through adding additives to the drilling fluid. The study includes experiments by using two types of drilling fluids, API and polymer type, with five types of additives (KCl, NaCl, CaCl2, Na2SiO3 and Flodrill PAM 1040) in different concentrations (0.5, 1, 5 and 10) wt% and different immersion period (1, 24 and 72 h) hours. The effect of drilling fluids and additive salts on shale has been studied by using different techniques: (XRD, XRF, reflected and transmitted microscope) as well shale recovery. The results show that adding 10 wt% of Na2SiO3 to API drilling fluid results in a high percentage of shale recovery (78.22%), while the maximum shale recovery was (80.57%) in polymer drilling fluid type gained by adding 10 wt% of Na2SiO3.


Author(s):  
M. Chukunedum Onojake ◽  
T. Angela Waka

The petroleum industry includes the global processes of exploration, extraction, refining, transportation and marketing of natural gas, crude oil and refined petroleum products. The oil industry demands more sophisticated methods for the exploitation of petroleum. As a result, the use of oil field chemicals is becoming increasingly important and has received much attention in recent years due to the vast role they play in the recovery of hydrocarbons which has enormous  commercial benefits. The three main sectors of the petroleum industry are Upstream, Midstream and Downstream. The Upstream deals with exploration and the subsequent production (drilling of exploration wells to recover oil and gas). In the Midstream sector, petroleum produced is transported through pipelines as natural gas, crude oil, and natural gas liquids. Downstream sector is basically involved in the processing of the raw materials obtained from the Upstream sector. The operations comprises of refining of crude oil, processing and purifying of natural gas. Oil field chemicals offers exceptional applications in these sectors with wide range of applications in operations such as improved oil recovery, drilling optimization, corrosion protection, mud loss prevention, drilling fluid stabilization in high pressure and high temperature environment, and many others. Application of a wide range of oilfield chemicals is therefore essential to rectify issues and concerns which may arise from oil and gas operational activities. This review intends to highlight some of the oil field chemicals and  their positive applications in the oil and gas Industries.


2021 ◽  
Author(s):  
Vitaly Sherishorin ◽  
Martin Rylance ◽  
Yevgeniy Tuzov ◽  
Olga Krokhaleva ◽  
Evgeny Tikhonov ◽  
...  

Abstract The paper describes the first deployment of HGS in Eastern Siberia as a mud additive. The technology was utilized for reducing drilling fluid density for prevention and mitigation of losses; while drilling through a producing reservoir section with low pore pressure, unconsolidated and fractured sands. The engineering considerations, fundamentals of the approach and major risks involved were reviewed with application to the Sredneboutobinskoye Oilfield as a pilot field application for broader future plans. Key planning, delivery and execution principles of the initial application will be reported in the paper. Initially deployed on three wells, including multi-laterals (Rylance et al., 2021), the paper will walk through the engineering considerations during the planning and execution phases. Key sections include the data gathered and the many lessons learned during the incremental and stepwise deployment. The paper will also report on post drilling productivity and comparisons with the offset wells drilled with conventional mud systems, which suffered severe losses. The results of this pilot have exceeded expectations. There have been many insights and the Team are now looking to set a timetable to scale-up across the Taas-Yuryakh Neftegazodobycha (TYNGD). After many hours of laboratories study and preparation works, the general plan was to reduce the static density and ECD to mitigate fluid losses. However, the applied results showed additional effects from HGS. Data will be provided that demonstrated loss-free drilling was achieved where this had not been the case before, with a material reduction in NPT, lost circulation material (LCM) needs and costs. Much has been learned, recovered HGS material has been demonstrated to be an effective LCM pill and centralization of mud processing may offer additional cost savings and improvements. Further efficiencies are also expected to be achieved and future potential is considerable. HGS for cementing is well documented, yet application for drilling fluids has been less well reported and almost exclusively related to single wells. The TYNGD application is innovative as this is a major development with 10 active drilling rigs. The application is on multi-laterals and offset wells are available for direct comparison. The results of the approach demonstrate a new way of performing well construction in an effective manner for major field developments where losses are prevalent.


Author(s):  
Borivoje Pasic ◽  
Nediljka Gaurina-Medjimurec ◽  
Bojan Moslavac

Wellbore instability was and is one of the most frequent problems in petroleum industry, especially in the drilling operations. It is mainly caused by the shale formations which represent 75% of all drilled formations. The wellbore instability problems involve tight hole spots, wellbore diameter enlargement, the appearance of cavings, the inability of carrying out wireline operations, poor hole cleaning, unsuccessful wellbore cementing operations and other. The wellbore instability is the result of mechanical and physico-chemical causes mostly acting concurrently. The shale instability basically comes out of its mineralogical composition (especially clay minerals content) and physico-chemical properties. Shale-mud interaction includes water/ions movement in and out of the shales due to pressure differential, osmosis, diffusive flow and capillary pressure. Many research activities about shale instability causes and shale properties (affecting shale behavior) definition have been carried out by now. Different shale samples, laboratory equipment and inhibitive muds have been used. Laboratory tested shale samples are provided by the wellbore cores, surface sampling or, which is the simplest method, by collecting the samples at the shale shakers during drilling operation. The amount of these samples is not enough for laboratory testing. Another problem is closely connected to sample quality and preservation. There are also differences in drilling fluids used in these laboratory tests, especially in their composition (sometimes containing more than one shale inhibitor). It is difficult to compare test results and conclusions made by different authors. The laboratory study presented within this paper are done with artificial clay samples (pellets) made by compacting the powderish material containing exact quantity of quartz, montmorillonite and kaolinite. The laboratory testing is done by treating the powderish samples inside the desiccator (24 hours), compacting (30 minutes), swelling (24 hours) and drying samples (24-hour). Sample swelling is tested by using different mud types and the sample mass is measured in each above mentioned phase. Special attention is directed to preparation and pellets content definition as a good replacement for the original shale in laboratory testing of shale and drilling fluid interaction. The influence of used muds on the total pellet swelling and swelling intensity, especially at the early phase of testing was determined.


Author(s):  
Abdol Samad Rahmati ◽  
Afshin Tatar

The petroleum industry today has no choice, but to explore new and ever more deep and challenging pay zones as the most of the shallow oil and gas producing pay zones are severely depleted during the years of production. For improved drilling fluid performance in deep and hostile environment wells, accurate knowledge about the fluid density at high temperature and pressure conditions is an essential step. To achieve this mission, this study is aiming at developing a new computer-based tool is designed and applied for accurate calculation of drilling fluid density at HPHT conditions. In order to seek the comprehensiveness of the developed tool, four different kinds of fluids including water based, oil based, Colloidal Gas Aphron (CGA) based and also synthetic fluids are selected for modeling purpose. Radial Basis Function (RBF) network is considered as the modeling network. The results calculated via the proposed algorithm are compared to data reported in the literature. To make a judgment based on various statistical quality measures, it is concluded that the developed tool is reliable and efficient for density calculations of various fluids at extreme conditions.


Author(s):  
N. M. Wasiuddin ◽  
Nouman Ali ◽  
M. R. Islam

Despite continuous research and development on drilling fluids and waste minimization during the last 40 years, offshore drilling waste (OSDW) remains a significant environmental concern for the petroleum industry. OSDW contains three types of contaminants namely, heavy metals from drilling fluid, oil from oil based mud or petroleum contamination and naturally occurring radioactive substances from exposed formations. In this study a promising and permanent solution based on recycling of OSDW as road construction materials has been investigated. It has been revealed previously that five to ten percent of some waste materials such as recycled asphalt pavement, tire rubber, glass, roofing shingles, polythene etc. can be added to hot mix asphalt (HMA) concrete without sacrificing its strength and performance. These wastes can be added to the HMA by either replacing the mineral filler or proportionately reducing the amount of virgin material in the original mix. In this laboratory test study, different percentages of OSDW were added as aggregate replacement and the properties of resulting blends were evaluated. Three beneficial actions, namely, incineration, dilution and solidification took place. At the end, the effectiveness of using OSDW was determined with the Marshall stability and flow, permeability of HMA concrete, leachability and resilient modulus. It has been found that for the drilling waste used in this research the percentage that can be used in HMA concrete without sacrificing its properties is as high as 20%. Even though the percentage of waste that can be used as aggregate replacement varies with waste types and properties, the proposed technique offers significant promises for OSDW recycling.


SPE Journal ◽  
2021 ◽  
pp. 1-8
Author(s):  
E. Eid ◽  
H. Tranggono ◽  
M. Khalifeh ◽  
S. Salehi ◽  
A. Saasen

Summary Our objective is to present selected rheological and mechanical properties of rock-based geopolymers contaminated with different concentrations of drilling fluids. The possible flash setting and the maximum intake of drilling fluids before seeing a dramatic deterioration of the geopolymers are presented. Rock-based geopolymers designed for cementing conductor and surface casing were prepared and cured for up to 28 days at 22°C and atmospheric pressure. Water-based drilling fluids (WBDFs) and oil-based drilling fluids (OBDFs) were designed in accordance with the recommendations from the petroleum industry. The fluid samples were prepared, and their viscous behavior was characterized before and after hot-rolling. The geopolymeric slurries were mixed and then blended with the prepared drilling fluid volumes. The contaminated geopolymeric slurries were cured and tested at different time intervals. American Petroleum Institute (API) Class G neat cement was used as a reference. These samples were cured and contaminated with the same drilling fluids. The properties of contaminated geopolymer slurries were benchmarked with those of the contaminated Class G cement. The obtained mechanical properties showed that the rock-based geopolymers are more sensitive to WBDFs than to OBDFs. However, for contaminated Portland cement samples, the obtained results were opposite, and the contamination effect of OBDF on cement was more noticeable than WBDF. The impact of geopolymer contamination is a function of curing time. Although geopolymeric samples showed dramatic strength retrogression at the early time, strength buildup of the samples compensated for the impact of contamination.


2014 ◽  
Vol 5 (1) ◽  
pp. 260-270
Author(s):  
Khoshniyat A ◽  
Shojaei M. ◽  
Jarahian K. ◽  
Mirali M. ◽  
Ghorashi S. ◽  
...  

A new experimental model was developed to predict the role of special polymeric additives, in the drilling fluid formulation, on the wellbore stability in shale formation. The shale formation was regarded as a non-ideal membrane and the effects of various characteristics of the added polymers were studied on the membrane reflection coefficient. The model was applied to unique field data from the oil field in south of Iran, including clay structure, cation exchange capacity (CEC), density and porosity of the shale. The results, using various polyglycols and polyacrylamides as the polymeric additive, showed that the structure of the polymeric chains e.g. type and content of ionic segments had significant effect on their adsorption mechanism and its strength.  It was concluded that increasing the molecular weight of the polymer chains decreased the rate and amount of the adsorption due to the increasing of the entanglements between the chains which in turn limited their mobility. So, adsorption of the polymeric material on the shale had significant impress on its performance as a membrane by increasing the shale reflection coefficient enhancing its stability during drilling process. Finally, the developed model results were in good agreement by experimental test results which was done in a specific shale stability set up.


Sign in / Sign up

Export Citation Format

Share Document