Influence of Secondary Alterations on the Structure of the Pore Space of the Upper Permian Carbonate Deposits of the Northern Side Zone of the Caspian Basin

2021 ◽  
Author(s):  
Amir Rustamovich Ayupov ◽  
Sergey Faizovich Khafizov ◽  
Kurmangazy Orinbgazievich Iskaziev

Abstract The analysis of the facies distribution of reservoirs within the Moscow-Artinskian sedimentation rim within the Northern part of the Pre-Caspian Basin was carried out. The Teplovsko-Tokarevskaya group of deposits is a chain of carbonate structures stretched in the sub-latitudinal direction. They are consist mainly of bioherm structures, which include tubifytes, foraminifera, crinoidea, ostracods, ostracods, etc. From the lithological point of view, the reservoir rocks are represented by dolomite-limestone differences-from organic limestones to secondary chemogenic dolomites. The influence of facies distribution and secondary dolomitization on the structure of the pore space remains controversial and requires detailed study. The concepts of secondary dolomitization were analyzed and one of the concepts of the formation of secondary dolomites and anhydrites was used to justify the facies distribution: Zones of secondary transformation (dolomitization) form a sweet spots zone in the Artinskian carbonate horizon when high-salinity (Mg2+) waters from the Filippovsky horizon carbonates are infiltrates to Artinskian carbonate. As a result of the discharge of elision waters during digenetic dehydration of gypsum. After the anhydride overlaying of the Artinskian carbonate structure, several regressive-transgressive cycles occurred, which formed a sequence of consistent dolomite-limestone and gypsum layers in the Filippovskian time. During the diagenesis water contained in the gypsum was dehydrated into the permeable zones in carbonates of the Filippovsky horizon, followed by unloading in the region of the Artinskian horizon. Evaporite sedimentation of chemogenic carbonates and gypsum created a condition for the subsequent infiltration of sulphate and magnesium waters in the direction dip formation angle. The source of magnesium is the water remaining after the precipitation of gypsum and carbonates in the Filippovskian time.

2002 ◽  
Vol 16 (3) ◽  
pp. 129-149 ◽  
Author(s):  
Boris Kotchoubey

Abstract Most cognitive psychophysiological studies assume (1) that there is a chain of (partially overlapping) cognitive processes (processing stages, mechanisms, operators) leading from stimulus to response, and (2) that components of event-related brain potentials (ERPs) may be regarded as manifestations of these processing stages. What is usually discussed is which particular processing mechanisms are related to some particular component, but not whether such a relationship exists at all. Alternatively, from the point of view of noncognitive (e. g., “naturalistic”) theories of perception ERP components might be conceived of as correlates of extraction of the information from the experimental environment. In a series of experiments, the author attempted to separate these two accounts, i. e., internal variables like mental operations or cognitive parameters versus external variables like information content of stimulation. Whenever this separation could be performed, the latter factor proved to significantly affect ERP amplitudes, whereas the former did not. These data indicate that ERPs cannot be unequivocally linked to processing mechanisms postulated by cognitive models of perception. Therefore, they cannot be regarded as support for these models.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


1991 ◽  
Vol 279 (3) ◽  
pp. 855-861 ◽  
Author(s):  
S E Szedlacsek ◽  
R G Duggleby ◽  
M O Vlad

A new type of enzyme kinetic mechanism is suggested by which catalysis may be viewed as a chain reaction. A simple type of one-substrate/one-product reaction mechanism has been analysed from this point of view, and the kinetics, in both the transient and the steady-state phases, has been reconsidered. This analysis, as well as literature data and theoretical considerations, shows that the proposed model is a generalization of the classical ones. As a consequence of the suggested mechanism, the expressions, and in some cases even the significance of classical constants (Km and Vmax.), are altered. Moreover, this mechanism suggests that, between two successive enzyme-binding steps, more than one catalytic act could be accomplished. The reaction catalysed by alcohol dehydrogenase was analysed, and it was shown that this chain-reaction mechanism has a real contribution to the catalytic process, which could become exclusive under particular conditions. Similarly, the mechanism of glycogen phosphorylase is considered, and two partly modified versions of the classical mechanism are proposed. They account for both the existing experimental facts and suggest the possibility of chain-reaction pathways for any polymerase.


2021 ◽  
pp. 86-98
Author(s):  
V. Yu. Ogoreltsev ◽  
S. A. Leontiev ◽  
A. S. Drozdov

When developing hard-to-recover reserves of oil fields, methods of enhanced oil recovery, used from chemical ones, are massively used. To establish the actual oil-washing characteristics of surfactant grades accepted for testing in the pore space of oil-containing reservoir rocks, a set of laboratory studies was carried out, including the study of molecular-surface properties upon contact of oil from the BS10 formation of the West Surgutskoye field and model water types with the addition of surfactants of various concentrations, as well as filtration tests of surfactant technology compositions on core models of the VK1 reservoir of the Rogozhnikovskoye oil field. On the basis of the performed laboratory studies of rocks, it has been established that conducting pilot operations with the use of Neonol RHP-20 will lead to higher technological efficiency than from the currently used at the company's fields in the compositions of the technologies of physical and chemical EOR Neonol BS-1 and proposed for application of Neftenol VKS, Aldinol-50 and Betanol.


2021 ◽  
Author(s):  
Tancredi Caruso

<p>Habitat structure is a key factor controlling the structure of ecological communities. For example, complex habitat structure may increase species number, minimise competition and facilitate the retention of nutrients. Alteration and disturbance of habitat structure may thus negatively affect biodiversity. Soil is an extremely complex and highly structured environmental matrix. Soil structure, defined as a distribution of aggregate/pore space of different sizes, can thus be a major control of soil biological communities, which are for example highly structured in their size distribution. Soil organisms, however, also affect and modify soil structure, and for many organisms the soil habitat structure is thus not just a condition to which they have to adapt but, rather, an environmental feature they also affect. In this talk, I discuss all these aspects from a community ecology point of view and with an emphasis on statistical and dynamical models that soil ecologists are trying to develop to describe and predict the mutual interactions between soil structure and biological communities. I will focus on the different rates at which soil structure affects soil organisms and vice versa, to emphasise that the temporal scales at which we have to measure the two parts of this mutual feedback (i.e. soil structure -> biota vs. biota -> soil structure) are very different, and also variable in space and time. </p>


1988 ◽  
Vol 16 (1) ◽  
pp. 11-17
Author(s):  
Michael E. Patch

A variety of social contingencies have been described in terms of the patterning of self and/or social causality along a chain of responses between two persons. Non-reciprocal (pseudo and asymmetrical) contingencies focus the researcher on the comparative implications of self and socially caused behavior as a matter of causal preference and relationship style. Two laboratory studies were conducted with this point of view in mind. In the first study it was shown that subjects who had indicated a preference for socially caused behavior were more likely to choose spontaneous interactions with strangers while those who preferred self causality were more likely to choose scripted or nonspontaneous interactions. In the second study it was found that subjects who preferred social causality were more accurate in assessing their own influence over in the behavior of others in a self disclosure task than were those who preferred self causality. The findings were discussed in terms of both the need for a causal preference assessment technique as well as further research into the phenomena of “pseudo relationships.“


Sign in / Sign up

Export Citation Format

Share Document