Laboratory studies of oil-washing characteristics of surfactants in the pore space of reservoir rocks

2021 ◽  
pp. 86-98
Author(s):  
V. Yu. Ogoreltsev ◽  
S. A. Leontiev ◽  
A. S. Drozdov

When developing hard-to-recover reserves of oil fields, methods of enhanced oil recovery, used from chemical ones, are massively used. To establish the actual oil-washing characteristics of surfactant grades accepted for testing in the pore space of oil-containing reservoir rocks, a set of laboratory studies was carried out, including the study of molecular-surface properties upon contact of oil from the BS10 formation of the West Surgutskoye field and model water types with the addition of surfactants of various concentrations, as well as filtration tests of surfactant technology compositions on core models of the VK1 reservoir of the Rogozhnikovskoye oil field. On the basis of the performed laboratory studies of rocks, it has been established that conducting pilot operations with the use of Neonol RHP-20 will lead to higher technological efficiency than from the currently used at the company's fields in the compositions of the technologies of physical and chemical EOR Neonol BS-1 and proposed for application of Neftenol VKS, Aldinol-50 and Betanol.

2021 ◽  
pp. 53-65
Author(s):  
V. Yu. Ogoreltsev ◽  
S. A. Leontiev ◽  
V. F. Diaghilev ◽  
V. M. Spasibov

Chemical enhanced oil recovery methods are widely used in field development. One of the methods for leveling injectivity is emulsion-based technologies. The mechanism of this technology is to create an increased filtration resistance of the most depleted reservoir intervals. To establish the actual oil-displacing characteristics of the emulsifier grades accepted for testing in the pore space of oil-containing reservoir rocks, a set of laboratory filtration studies was carried out on high-permeability core models at the AS12 horizon of the Nizhne-Sortymskoye oil field.Processing laboratory data after filtration of ready-to-use emulsions through core samples gives an increase in the oil displacement coefficient by water from 1.31 to 10.79 %. When constructing their correlation dependence, it is possible to identify the range of the final dynamic viscosity (from 5 to 9 mPa∙s) of the compositions of the emulsion-based technology, which is optimal for the most effective application on groups of AS formation.Based on the laboratory studies of rocks, it was established that carrying out geological and technical measures using the emulsifier Neftenol-NZ, which has proven itself in high efficiency from well treatments, will give a large volume of additional oil production, in comparison with the currently emulsifier Sinol-EM.


2020 ◽  
Vol 28 (2) ◽  
pp. 104-111
Author(s):  
Lesya Moroz ◽  
Andrii Uhrynovskyi ◽  
Vasyl Popovych ◽  
Bohdan Busko ◽  
Galyna Kogut

AbstractThe purpose of the article is to enhance the oil recovery coefficient of lower Menilite deposits of the Strutynsky oil field by using an ASP solution (a mixture of three agents: alkaline, surfactant and polymer (ASP)). The tasks were solved by choosing an effective method of enhancing oil recovery by using EORgui software and hydrodynamic modelling software by using Petrel, Eclipse software. Calculations of computer simulations indicate the possibility and technological efficiency of residual oil extraction through the use of ASP solution. After using the method of oil recovery enhancing in the lower Menilite deposits of the Strutynsky oil field by means of ASP solution, the coefficient of final oil recovery will increase from the initial value of 10.4% to the predicted 17.6%. For the first time, geological and hydrodynamic models have been created for the conditions of the Lower Menilite deposits of the Strutynsky oil field, and the most appropriate method for oil recovery enhancing by using the EORgui program has been selected. The suggested method for oil recovery enhancing can be applied within the framework of the concept for reviving the Lower Menilithic deposits of the Strutynsky oil field, as well as in other oil fields of Ukraine, which are developed with waterflood patterns and have similar geological and physical characteristics.


2021 ◽  
pp. 107-118
Author(s):  
E. A. Sidorovskaya ◽  
D. S. Adakhovskij ◽  
N. Yu. Tret'yakov ◽  
L. P. Panicheva ◽  
S. S. Volkova ◽  
...  

In conditions of declining production and significant watercut in most of producing oil fields in Western Siberia, secondary recovery methods such as waterflooding are ineffective. Promising methods for increasing oil recovery are chemical enhanced oil recovery methods such as surfactant-polymer (SP) flooding. Designing the chemical composition for SP flooding one should take into account the geological, physical and geochemical features of the oil field: reservoir temperature, composition and properties of reservoir fluids and rocks. The aim of the article is to create the optimum formulation of surfactant-polymer system for certain oil field in Western Siberia. The integrated laboratory studies are conducted to prove successful of SP formulation. The aqueous solubility, phase behavior experiment, low interfacial tension, admissible values of dynamic adsorption and oil produced (40 %) during coreflood experiments shows that SP formulation T01 meet the requirements for effective SP flooding.


2016 ◽  
Author(s):  
Ali Farog ◽  
Haytham A.Mustafa ◽  
Enas Mukhtar ◽  
Husham Elblaoula ◽  
Badreldin A. Yassin ◽  
...  

Author(s):  
Gulnaz Zh. Moldabayeva ◽  
Raikhan T. Suleimenova ◽  
Sairanbek M. Akhmetov ◽  
Zhanar B. Shayakhmetova ◽  
Gabit E. Suyungariyev

This paper discusses topical problems of further effective development of depleted oil fields (DOF) to increase their final oil recovery on the example of the oil field in Western Kazakhstan. Further exploitation of fields using waterflooding becomes unprofitable. At the same time, on average at these facilities, at least 50% of the reserves will remain unrecovered. Most of the oil fields in the Republic of Kazakhstan are at the late and final stages of development, which is characterised by an increase in the share of hard-to-recover oil reserves, a decrease in annual oil withdrawals, and a high water cut of the produced oil. Therefore, the problems of improving the technology aimed at reducing the volume of associated water production and increasing oil recovery from partially flooded deposits is very urgent. With an increase in the well density, the degree of field drilling and aging of the well stock, the work with the current declining well stock remains a very topical issue. Improving the efficiency of diagnostics and the systematic selection of wells for repair and isolation works is an important element for rationalising field development in the current conditions of profit variance in the oil and gas industry. The methods of bottomhole zone treatment also implement a deflecting effect on filtration flows. Therefore, this method includes a wide range of geological and technical measures: down-spacing; water production restraining; conformance control of injectivity profiles; forced production; all types of mechanical, thermochemical and thermal technologies. Consider a number of geological and technical measures that perform the tasks of occupational safety rules. Geological and statistical models are proposed for diagnosing wells for a premature increase of water production using factor analysis calculations for base production and Hall plots. Results. The degree of temperature influence of the primary components of the compounds on the rheology, filtration characteristics, and stability of inverted emulsions was determined. The classification of oil loss factors was carried out based on the results of downhole analysis and oil production losses were determined. Geological and statistical models for well diagnostics for premature increase in water production were built using factor analysis calculations for base production and Hall plots.


2020 ◽  
pp. 31-43
Author(s):  
T. K. Apasov ◽  
G. T. Apasov ◽  
E. E. Levitina ◽  
E. I. Mamchistova ◽  
N. V. Nazarova ◽  
...  

Despite the current political and economic situation in Russia, mining in small oil fields is important and topical issue. We have conducted a geological and field analysis of the development of one of such small oil fields from setting into operation to shut down and have identified the reasons for the low production of oil reserves and the failure to achieve the design oil recovery factor. At the same time, the field has sufficient reserves of recoverable reserves, and there is an available transport infrastructure, which proves the necessity to consider rerun it for the development. For this purpose, geological and technical actions have been developed and are being proposed for implementation to improve the efficiency of field development. These actions envisage implementation in two stages: the first with minimal costs and the second with higher costs. At the first stage, at the existing reservoir pressure, we recommend to perform forced fluid withdrawals with an increase in depression on the reservoir. At the second stage, we offer actions at a higher cost, such as hydraulic fracturing, sidetracking. As a result of the analysis, actions have been developed to increase selection from initial recoverable reserves and increase the economic efficiency when the field is rerun.


2021 ◽  
Author(s):  
Chaitanya Behera ◽  
Sandip Mahajan ◽  
Carlos Annia ◽  
Mahmood Harthi ◽  
Jane-Frances Obilaja ◽  
...  

Abstract This paper presents the results of a comprehensive study carried out to improve the understanding of deep bottom-up water injection, which enabled optimizing the recovery of a heavy oil field in South Oman. Understanding the variable water injection response and the scale of impact on oil recovery due to reservoir heterogeneity, operating reservoir pressure and liquid offtake management are the main challenges of deep bottoms-up water injection in heavy oil fields. The offtake and throughput management philosophy for heavy oil waterflood is not same as classical light oil. Due to unclear understanding of water injection response, sometimes the operators are tempted to implement alternative water injection trials leading to increase in the risk of losing reserves and unwarranted CAPEX sink. There are several examples of waterflood in heavy oil fields; however, very few examples of deep bottom water injection cases are available globally. The field G is one of the large heavy oil fields in South Oman; the oil viscosity varies between 250cp to 1500cp. The field came on-stream in 1989, but bottoms-up water-injection started in 2015, mainly to supplement the aquifer influx after 40% decline of reservoir pressure. After three years of water injection, the field liquid production was substantially lower than predicted, which implied risk on the incremental reserves. Alternative water injection concepts were tested by implementing multiple water injection trials apprehending the effectiveness of the bottoms-up water injection concept. A comprehensive integrated study including update of geocellular model, full field dynamic simulation, produced water re-injection (PWRI) model and conventional field performance analysis was undertaken for optimizing the field recovery. The Root Cause Analysis (RCA) revealed many reasons for suboptimal field performance including water injection management, productivity impairment due to near wellbore damage, well completion issues, and more importantly the variable water injection response in the field. The dynamic simulation study indicated negligible oil bank development due to frontal displacement and no water cut reversal as initial response to the water injection. Nevertheless, the significance of operating reservoir pressure, liquid offtake and throughput management impact on oil recovery cann't be precluded. The work concludes that the well reservoir management (WRM) strategy for heavy oil field is not same as the classical light oil waterflood. Nevertheless, the reservoir heterogeneity, oil column thickness and saturation history are also important influencing factors for variable water injection response in heavy oil field.


1975 ◽  
Vol 15 (05) ◽  
pp. 411-424 ◽  
Author(s):  
A. Finol ◽  
S.M. Farouq Ali

Abstract A two-phase, two-dimensional black oil simulator was developed for simulating reservoir production behavior with simultaneously occurring reservoir formation compaction and ground subsidence at the surface.The flow equations were solved by both alternating direction implicit procedure and strongly implicit procedure. Reservoir compaction was described on the basis of the experimental data reported. The magnitude of areal subsidence at the surface was calculated using reservoir compaction, utilizing the recently developed theory of poroelasticity. poroelasticity. Computer runs were used to generate a variety of data, such as reservoir Pressure variation with oil production, for different reservoir compaction production, for different reservoir compaction coefficients. It was found that the average reservoir pressure increased with the Compaction coefficient pressure increased with the Compaction coefficient for a given cumulative oil production.The model was used for generating the reservoir formation profiles, as well as the ground subsidence bowls for a variety of conditions. It was found that the subsidence behavior strongly depends on the depth of burial. For example, with an increase in the depth, the reservoir bottom surface may actually uplift, while the top surface subsides.The model was also used for studying the effect of subsidence on pressure buildup behavior. The calculated reservoir pressure was higher in a compacting than in a noncompacting reservoir, taking into account the variation of permeability with compaction.Another phase studied was the effect of rebound on reservoir performance when gas is injected into the formation. Even though rebound is small in practice (on the order of 10 percent of subsidence), practice (on the order of 10 percent of subsidence), the effect was clearly evident in the reservoir pressure-production behavior. However, when there pressure-production behavior. However, when there was no rebound, gas injection simply inhibited compaction.Finally, the model was used for simulating the reported oil production and subsidence history of one of the Bolivar Coast oil fields in the Western Venezuela. Fair agreement was obtained between the observed and the predicted behavior. Introduction The phenomenon of ground subsidence associated with production of oil or gas from underground hydrocarbon reservoirs is not common; however, it does present environmental problems in a few oil-producing areas around the world. Notable examples are the Wilmington oil field, below Long Beach, Calif. where almost 30 ft of subsidence have been recorded, and the oil fields near and under Lake Maracaibo in Venezuela, where the surface has subsided as much as 10 ft. Other cases have been reported in Harris County, Tex., in the Niigata district of Japan, and in the Po Delta in Italy.Numerous causes may give rise to ground subsidence, either natural or as a result of man's activities. However, as far as the problem at hand is concerned, the observed land subsidence is considered to be a result of reservoir compaction, resulting from pore pressure decline in reservoirs that meet certain specific geometrical and structural conditions. The changes in the petrophysical properties of reservoir rocks caused by compaction properties of reservoir rocks caused by compaction have been studied to some extent, as well as the influence of such changes on the fluid production behavior of the reservoir. However, very little has been accomplished in relating the compaction of the underground reservoir with the subsidence occurring at the surface. Among the few studies conducted on this problem, the most realistic are those that consider subsidence above a disk-shaped reservoir, in which a uniform pressure reduction has occurred. These studies do not simulate the fluid production behavior of the compacting reservoir as such; this is considered to be known and is used to determine the compaction of the reservoir and the accompanying subsidence. SPEJ P. 411


2013 ◽  
Vol 53 (2) ◽  
pp. 489
Author(s):  
Reza Ardianto

Business management of oil and gas in Pertamina State Oil enterprises was handed to one of its subsidiaries: Pertamina EP (PEP). With a vast working area of 140,000 km2, it consists of 214 fields where 80% is an old field (mature field or brown field). Most of these oil fields were discovered during Dutch colonialism. One of these fields was Rantau oil field, discovered in 1928; it is considered one of potential structure at the time. Peak oil production was achieved at 31,711 barrels of oil per day (BOPD) (wc 17.2%) in 1969, and it is still producing 2,500 BOPD from primary stage.To get better recovery from the Rantau oil field, it is necessary to identify the potential of secondary recovery water-flooding. Some screening criteria had been completed to select an appropriate method that could be applied in the Rantau field. PEP is preparing an Enhanced Oil Recovery (EOR) program to be applied in some oil fields with subsurface and surface potential consideration. The implementation was initiated by the EOR Department at PEP. The issue of the national oil production increasing program from the government has to be realised by the EOR Department at Pertamina EP. Following the national oil increasing program, management of PEP urged to increase oil production in a rapid and realistic way. As a result, the program of secondary and tertiary recovery pilot project should be conducted simultaneously by the EOR Department on some of the fields that have passed their peak. On the other hand, PEP has only limited geology, geophysics, reservoir, and production (GGRP) data, and most of the oil fields have been producing since 1930s. The conditions that have to be dealt with are as follows: production from the existing field is declining, data is collected and interpreted during a long period, huge amounts of production data, and reservoir model and simulation do not exist and are not frequently updated. Based on this, the planning of EOR struggled due to length of time needed versus the need for quick development. It has become much more of a challenge for the team consisting of integrated geophysics, geology, reservoir, production, process facility, project management and economic evaluation. This extended abstract presents the term of managing limited GGRP data that contributes to the successful pilot waterflood project in the Rantau field. It also explains the uses of limited subsurface GGRP data to overcome the uncertainty for planning of the waterflood pilot project in the Rantau field, as a part of planning using limited data.


2021 ◽  
pp. 61-72
Author(s):  
I. G. Sabanina ◽  
T. V. Semenova ◽  
Yu. Ya. Bolshakov ◽  
S. V. Vorobjeva

Currently, most of the oil fields in the West Siberian oil and gas province are in the final stage of development. There is water-cut in production, a decrease in oil production, and the structure of residual reserves deteriorates. The search and application of the most successful scientific methods and technologies for improving oil recovery in the development of fields is quite an urgent task.It should be taken into account that hydrophobic reservoirs are common in the oil fields of Western Siberia, and when applying the method of reservoir flooding, this fact should be taken into account and a more detailed approach should be taken to the study of capillary forces to prevent flooding of productive objects. Despite the good knowledge of the West Siberian megabasin, some fundamental issues of its structure and oil and gas potential remain debatable.The article proposes methods for improving oil recovery of the BS10 formation of the Ust-Balykskoye oil field based on the study of capillary pressures in productive reservoir formations, and provides recommendations for the placement of injection wells. The study of the capillary properties of reservoir rocks will significantly improve the efficiency of exploration and field operations in oil fields.


Sign in / Sign up

Export Citation Format

Share Document