Upscaling Float-over Installation

2021 ◽  
Author(s):  
Rory van Doorn ◽  
Sebastiaan Polkamp

Abstract This paper presents the latest developments in Transport and Installation methods for Topsides up to 38,500mt. For such heavy-weight structures Boskalis introduces a solution by combining the beneficial features of a Heavy Transport Vessel dry-transportation with the advantages of a DP2 Barge float-over installation. This unique Transport and Installation approach, a so called "Piggyback T&I", may be characterized as follows:

Author(s):  
R.J.M. Hay ◽  
D.L. Ryan

In a series of trials at Grasslands Gore, over 10 years, the late-flowering tetraploid red clover 'Grassland Pawera' was more productive and persistent than other red clover cultivars. The strong summer growth of Pawera meets the need for heavy-weight lamb feed and high quality forage for conservation in intensive sheep farming systems in Southland. Lenient. infrequent defoliation is necessary to maximise DM production and persistence of Pawera. The most compatible of the grasses evaluated was 'Grasslands Roa' tall fescue. However, 'Grasslands Nui' ryegrass will still be the major grass sown with Pawera owing to its widespread acceptance. In ryegrass mixtures, sowing rates of 5-7 kg/ha of red clover were needed to optimise establishment and subsequent yield. Evidence of oestrogenic activity of Pewera to sheep prompted Grasslands Division to select within Pawera for a low formononetin cultivar. Keywords: red clover, Pawera. Hamua, Turoa. G21. G22, G27. oestrogenic activity, Nui ryegrass, Roa tall fescue, Maru phalaris. Southland, sheep grazing, frequency, intensity, quality. seasonal growth


1962 ◽  
Vol 21 (3) ◽  
pp. 593-596 ◽  
Author(s):  
W. Y. Varney ◽  
J. D. Kemp ◽  
C. D. Phillips ◽  
C. E. Barnhart
Keyword(s):  

2020 ◽  
Vol 13 (1) ◽  
pp. 16
Author(s):  
Kukjoo Kim ◽  
Kyung-Ryeung Min ◽  
Young-Jun Park

The Korean peninsula is under increasing threat of electromagnetic pulses (EMPs) from neighboring countries; EMP protection facilities are an essential means of ensuring the operational readiness of the military. However, existing EMP protection facilities are manufactured as fixed-weight structures, which limit the mobility of military operations and lead to the misconception of EMP protection as something only required for higher command. The current military and official EMP protection standards require only a uniform shielding effectiveness of 80 dB. Therefore, this study aims to differentiate the existing uniform level of shielding effectiveness of 80 dB into 80 dB, 60 dB, 40 dB, etc. Further, it seeks to derive the factors to be considered when applying various methods, such as shielding rooms, shielding racks, site redundancy, spare equipment, and portable lightweight protective tents, for recovery of failure, instead of the existing protection facilities that rely on shielded rooms by the Delphi analysis. Then, the applicability of lightweight EMP protection is determined after selecting lightweight materials to build a facility. The electromagnetic shielding performance of 21 types of materials was measured in the 30 MHz–1.5 GHz frequency band using ASTM-D-4935-10. The results showed the possibility of developing a lightweight EMP shielding facility, which would save approximately 316,386 tons of concrete, reducing the CO2 emissions by approximately 9,972,489 tons. Assuming that the Korean carbon transaction price is USD 50/ton CO2, the savings are equivalent to USD 49,862,435.


Author(s):  
Sami Demiroluk ◽  
Hani Nassif ◽  
Kaan Ozbay ◽  
Chaekuk Na

The roadway infrastructure constantly deteriorates because of environmental conditions, but other factors such as exposure to heavy trucks exacerbates the rate of deterioration. Therefore, decision-makers are constantly searching for ways to optimize allocation of the limited funds for repair, maintenance, and rehabilitation of New Jersey’s infrastructure. New Jersey legislation requires operators of overweight (OW) trucks to obtain a permit to use the infrastructure. The New Jersey Department of Transportation (NJDOT) issues a variety of permits based on the types of goods carried. These permits allow OW trucks to use the infrastructure either for a single trip or for multiple trips. Therefore, one major concern is whether the permit revenue of the agency can recoup the actual cost of damage to the infrastructure caused by these OW trucks. This study investigates whether NJDOT’s current permit fee program can collect enough revenue to meet the actual cost of damage to the infrastructure caused by these heavy-weight permit trucks. The infrastructure damage is estimated by using pavement and bridge deterioration models and New Jersey permit data from 2013 to 2018 containing vehicle configuration and vehicle route. The analysis indicates that although the cost of infrastructure damage can be recovered for certain permit types, there is room for improvement in the permit program. Moreover, based on permit rules in other states, the overall rank of the New Jersey permit program is evaluated and possible revisions are recommended for future permit policies.


2021 ◽  
Vol 40 (2) ◽  
pp. 65-69
Author(s):  
Richard Wai

Modern day cloud native applications have become broadly representative of distributed systems in the wild. However, unlike traditional distributed system models with conceptually static designs, cloud-native systems emphasize dynamic scaling and on-line iteration (CI/CD). Cloud-native systems tend to be architected around a networked collection of distinct programs ("microservices") that can be added, removed, and updated in real-time. Typically, distinct containerized programs constitute individual microservices that then communicate among the larger distributed application through heavy-weight protocols. Common communication stacks exchange JSON or XML objects over HTTP, via TCP/TLS, and incur significant overhead, particularly when using small size message sizes. Additionally, interpreted/JIT/VM-based languages such as Javascript (NodeJS/Deno), Java, and Python are dominant in modern microservice programs. These language technologies, along with the high-overhead messaging, can impose superlinear cost increases (hardware demands) on scale-out, particularly towards hyperscale and/or with latency-sensitive workloads.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1312 ◽  
Author(s):  
Tadeusz Szelangiewicz ◽  
Katarzyna Żelazny ◽  
Andrzej Antosik ◽  
Maciej Szelangiewicz

Unmanned autonomous transport vessels (MASS) are the future of maritime transport. The most important task in the design and construction of unmanned ships is to develop algorithms and a computer program for autonomous control. In order for such a computer program to properly control the ship (realizing various functions), the ship must be equipped with a computer system as well as measurement sensors and navigation devices, from which the recorded parameters are processed and used for autonomous control of the ship. Within the framework of conducted research on autonomous ships, an experimental model of an unmanned ship was built. This model was equipped with a propulsion system not commonly used on transport vessels (two azimuth stern thrusters and two bow tunnel thrusters), but providing excellent propulsion and steering characteristics. A complete computer system with the necessary measuring sensors and navigation devices has also been installed in the model of the ship, which enables it to perform all functions during autonomous control. The objective of the current research was to design and build a prototype computer system with the necessary measurement sensors and navigation devices with which to autonomously control the unmanned ship model. The designed computer system is expected to be optimal for planned tasks during control software tests. Tests carried out on open waters confirmed the correctness of the operation of the computer system and the entire measurement and navigation equipment of the built model of the unmanned transport vessel.


Sign in / Sign up

Export Citation Format

Share Document